944 resultados para Hepatotoxic plants
Resumo:
The effects of municipal-treated wastewater on growth and gas exchange characteristics were studied in eucalyptus plants cultivated in a greenhouse under continuous sub irrigation with 70 % Long Ashton solution as a control, 100 % treated wastewater, and treated wastewater diluted 50 % with tap water. Irrigation with wastewater resulted in a reduction of total dry matter per plant and the shoot-to-root ratio and increased specific leaf mass, irrespective of the dilution. The gas exchange characteristics were adversely affected by the irrigation with wastewater, with photosynthetic rates been negatively affected. Total chlorophyll and carotenoids content were reduced in plants grown under treated wastewater. The results demonstrated that when the eucalyptus plants were grown under treated wastewater as the only source of mineral nutrients they were able to produce nearly 50 % of the dry matter produced by the plants grown under appropriate mineral nutrient supply, irrespective of the dilution. Therefore, the contribution of mineral nutrients and organic matter from the treated wastewater used as agricultural irrigation will be significant in lower the fertilizer rates without reducing dry matter production per plant.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of organic compounds has been a good option to reduce spending on fertilizers, and gain increased productivity in the cultivation of lettuce. However, given the wide variety of raw materials used in the preparation of organic compounds, studies are needed to evaluate its effects on the release of essential nutrients to plants and on the release of contaminants such as heavy metals. The aim of this study was to evaluate the mineral nutrition and heavy metal contamination of lettuce in soils treated with doses and types of compost. The experiment was conducted in a greenhouse in randomized blocks in factorial scheme 5x4, with five types of organic compounds and four nitrogen levels (0, 35, 70 and 140 kg ha(-1) of N), with four replications. In general, the doses of the compounds were not enough to provide the necessary quantity of nutrients to the lettuce, with the exception of nitrogen. There was no increase in levels of heavy metals in the soil above that allowed by Brazilian legislation. Furthermore, compounds based on manure plus grass, and commercial compound caused increases in Zn concentration in plants at levels above the recommended for consumed.
Resumo:
The objective of this study was to evaluate different nozzles and spray rates on drop deposition in corn (Zea mays), Euphorbia heterophylla and Brachiaria plantaginea, both weeds located at and between crop rows. The experimental design established was complete random blocks with treatments arranged at 2 x 2 factorial scheme (2 nozzles types: DG11002VS flat flan and medium droplets, TXVK08 cone and very fine droplets; and 2 rates: 100 and 200 L ha(-1)) with four replications. The spray applications occurred at 13 days after corn germination (3-5 expanded leaves), when E. heterophylla and B. plantaginea plants had 2-4 and 2-3 leaves, respectively. Solution of Brilliant Blue (FD&C-1) dye at 3,000 ppm was used as spray tracer. It was concluded that the greatest average deposits in corn plants was provided by TXVK08, independently of the spray rates used. The most uniform deposits occurred when the spray rates of 200 L ha(-1) was used. Spray deposits were most uniform in B. plantaginea compared to E. heterophylla when both weds were located at crop row, independently of nozzle or spray rates. However, the DG 11002VS spray nozzle provided the most uniform drop deposition on B. plantaginea located between the rows, while the most efficient deposition over E. heterophylla located between rows was TXVK08.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aprefeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO) is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP) in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA) and proline and reduced pirogalol peroxidase (PG-POD) activity, but did not affect the activity of superoxide dismutase (SOD). When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)