950 resultados para Hemispheric specialization
Resumo:
Ca(v)2.1 Ca(2+) channels (P/Q-type), which participate in various key roles in the CNS by mediating calcium influx, are extensively spliced. One of its alternatively-spliced exons is 37, which forms part of the EF hand. The expression of exon 37a (EFa form), but not exon 37b (EFb form), confers the channel an activity-dependent enhancement of channel opening known as Ca(2+)-dependent facilitation (CDF). In this study, we analyzed the trend of EF hand splice variant distributions in mouse, rat and human brain tissues. We observed a developmental switch in rodents, as well as an age and gender bias in human brain tissues, suggestive of a possible role of these EF hand splice variants in neurophysiological specialization. A parallel study performed on rodent brains showed that the data drawn from human and rodent tissues may not necessarily correlate in the process of aging.
Resumo:
Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Cognitive functions in the child's brain develop in the context of complex adaptive processes, determined by genetic and environmental factors. Little is known about the cerebral representation of cognitive functions during development. In particular, knowledge about the development of right hemispheric (RH) functions is scarce. Considering the dynamics of brain development, localization and lateralization of cognitive functions must be expected to change with age. Twenty healthy subjects (8.6-20.5 years) were examined with fMRI and neuropsychological tests. All participants completed two fMRI tasks known to activate left hemispheric (LH) regions (language tasks) and two tasks known to involve predominantly RH areas (visual search tasks). A laterality index (LI) was computed to determine the asymmetry of activation. Group analysis revealed unilateral activation of the LH language circuitry during language tasks while visual search tasks induced a more widespread RH activation pattern in frontal, superior temporal, and occipital areas. Laterality of language increased between the ages of 8-20 in frontal (r = 0.392, P = 0.049) and temporal (r = 0.387, P = 0.051) areas. The asymmetry of visual search functions increased in frontal (r = -0.525, P = 0.009) and parietal (r = -0.439, P = 0.027) regions. A positive correlation was found between Verbal-IQ and the LI during a language task (r = 0.585, P = 0.028), while visuospatial skills correlated with LIs of visual search (r = -0.621, P = 0.018). To summarize, cognitive development is accompanied by changes in the functional representation of neuronal circuitries, with a strengthening of lateralization not only for LH but also for RH functions. Our data show that age and performance, independently, account for the increases of laterality with age.
Resumo:
Rationale: To provide a better understanding of cognitive functioning, motor outcome, behavior and quality of life after childhood stroke and to study the relationship between variables expected to influence rehabilitation and outcome (age at stroke, time elapsed since stroke, lateralization, location and size of lesion). Methods: Children who suffered from stroke between birth and their eighteenth year of life underwent an assessment consisting of cognitive tests (WISC-III, WAIS-R, K-ABC, TAP, Rey-Figure, German Version of the CVLT) and questionnaires (Conner's Scales, KIDSCREEN). Results: Twenty-one patients after stroke in childhood (15 males, mean 11;11 years, SD 4;3, range 6;10-21;2) participated in the study. Mean Intelligence Quotients (IQ) were situated within the normal range (mean Full Scale IQ 96.5, range IQ 79-129). However, significantly more patients showed deficits in various cognitive domains than expected from a healthy population (Performance IQ p = .000; Digit Span p = .000, Arithmetic's p = .007, Divided Attention p = .028, Alertness p = .002). Verbal IQ was significantly better than Performance IQ in 13 of 17 patients, independent of the hemispheric side of lesion. Symptoms of ADHD occurred more often in the patients' sample than in a healthy population (learning difficulties/inattention p = .000; impulsivity/hyperactivity p = .006; psychosomatics p = .006). Certain aspects of quality of life were reduced (autonomy p = .003; parents' relation p = .003; social acceptance p = .037). Three patients had a right-sided hemiparesis, mean values of motor functions of the other patients were slightly impaired (sequential finger movements p = .000, hand alternation p = .001, foot tapping p = .043). In patients without hemiparesis, there was no relation between the lateralization of lesion and motor outcome. Lesion that occurred in the midst of childhood (5-10 years) led to better cognitive outcome than lesion in the very early (0-5 years) or late childhood (10-18 years). Other variables such as presence of seizure, elapsed time since stroke and size of lesion had a small to no impact on prognosis. Conclusion: Moderate cognitive and motor deficits, behavioral problems, and impairment in some aspects of quality of life frequently remain after stroke in childhood. Visuospatial functions are more often reduced than verbal functions, independent of the hemispheric side of lesion. This indicates a functional superiority of verbal skills compared to visuospatial skills in the process of recovery after brain injury. Compared to the cognitive outcome following stroke in adults, cognitive sequelae after childhood stroke do indicate neither the lateralization nor the location of the lesion focus. Age at stroke seems to be the only determining factor influencing cognitive outcome.
Resumo:
Nitrogen oxides play a crucial role in the budget of tropospheric ozone (O sub(3)) and the formation of the hydroxyl radical. Anthropogenic activities and boreal wildfires are large sources of emissions in the atmosphere. However, the influence of the transport of these emissions on nitrogen oxides and O sub(3) levels at hemispheric scales is not well understood, in particular due to a lack of nitrogen oxides measurements in remote regions. In order to address these deficiencies, measurements of NO, NO sub(2) and NO sub(y) (total reactive nitrogen oxides) were made in the lower free troposphere (FT) over the central North Atlantic region (Pico Mountain station, 38 degree N 28 degree W, 2.3 km asl) from July 2002 to August 2005. These measurements reveal a well-defined seasonal cycle of nitrogen oxides (NO sub(x) = NO+NO sub(2) and NO sub(y)) in the background central North Atlantic lower FT, with higher mixing ratios during the summertime. Observed NO sub(x) and NO sub(y) levels are consistent with long-range transport of emissions, but with significant removal en-route to the measurement site. Reactive nitrogen largely exists in the form of PAN and HNO sub(3) ( similar to 80-90% of NO sub(y)) all year round. A shift in the composition of NO sub(y) from dominance of PAN to dominance of HNO sub(3) occurs from winter-spring to summer-fall, as a result of changes in temperature and photochemistry over the region. Analysis of the long-range transport of boreal wildfire emissions on nitrogen oxides provides evidence of the very large-scale impacts of boreal wildfires on the tropospheric NO sub(x) and O sub(3) budgets. Boreal wildfire emissions are responsible for significant shifts in the nitrogen oxides distributions toward higher levels during the summer, with medians of NO sub(y) (117-175 pptv) and NO sub(x) (9-30 pptv) greater in the presence of boreal wildfire emissions. Extreme levels of NO sub(x) (up to 150 pptv) and NO sub(y) (up to 1100 pptv) observed in boreal wildfire plumes suggest that decomposition of PAN to NO sub(x) is a significant source of NO sub(x), and imply that O sub(3) formation occurs during transport. Ozone levels are also significantly enhanced in boreal wildfire plumes. However, a complex behavior of O sub(3) is observed in the plumes, which varies from significant to lower O sub(3) production to O sub(3) destruction. Long-range transport of anthropogenic emissions from North America also has a significant influence on the regional NO sub(x) and O sub(3) budgets. Transport of pollution from North America causes significant enhancements on nitrogen oxides year-round. Enhancements of CO, NO sub(y) and NO sub(x) indicate that, consistent with previous studies, more than 95% of the NO sub(x) emitted over the U.S. is removed before and during export out of the U.S. boundary layer. However, about 30% of the NO sub(x) emissions exported out of the U.S. boundary layer remain in the airmasses. Since the lifetime of NO sub(x) is shorter than the transport timescale, PAN decomposition and potentially photolysis of HNO sub(3) provide a supply of NO sub(x) over the central North Atlantic lower FT. Observed Delta O sub(3)/ Delta NO sub(y) and large NO sub(y) levels remaining in the North American plumes suggest potential O sub(3) formation well downwind from North America. Finally, a comparison of the nitrogen oxides measurements with results from the global chemical transport (GCT) model GEOS-Chem identifies differences between the observations and the model. GEOS-Chem reproduces the seasonal variation of nitrogen oxides over the central North Atlantic lower FT, but does not capture the magnitude of the cycles. Improvements in our understanding of nitrogen oxides chemistry in the remote FT and emission sources are necessary for the current GCT models to adequately estimate the impacts of emissions on tropospheric NO sub(x) and the resulting impacts on the O sub(3) budget.
Resumo:
Hemispheric lateralization is well known in the cerebral cortex, but not in subcortical structures like basal ganglia. The goal of our study was to determine whether lateralization was present in the direct and indirect striatal pathways. We studied gene expression in the striatum of healthy rats, which was divided into two sectors, medial and lateral. Dynorphin (DYN) and enkephalin (ENK) mRNA were analyzed as markers of the direct and indirect striatal pathways, respectively and glutamic acid decarboxylase (GAD) mRNA was analyzed as a marker of all medium spiny neurons. DYN and GAD mRNA expression was higher on the left hemisphere in the medial sector of the striatum, but not in the lateral one. We did not observe any difference between sides with ENK mRNA expression. We suggest the presence of a lateralization in the medial striatum, which is specific for the direct striatal pathway.
Resumo:
Background Recent work on the complexity of life highlights the roles played by evolutionary forces at different levels of individuality. One of the central puzzles in explaining transitions in individuality for entities ranging from complex cells, to multicellular organisms and societies, is how different autonomous units relinquish control over their functions to others in the group. In addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups must control the exploitation of the commons, or else be out-competed by more fit groups. Results We propose that two forms of conflict – access to resources within groups and representation in germ line – may be resolved in tandem through individual and group-level selective effects. Specifically, we employ an optimization model to show the conditions under which different within-group social behaviors (cooperators producing a public good or cheaters exploiting the public good) may be selected to disperse, thereby not affecting the commons and functioning as germ line. We find that partial or complete dispersal specialization of cheaters is a general outcome. The propensity for cheaters to disperse is highest with intermediate benefit:cost ratios of cooperative acts and with high relatedness. An examination of a range of real biological systems tends to support our theory, although additional study is required to provide robust tests. Conclusion We suggest that trait linkage between dispersal and cheating should be operative regardless of whether groups ever achieve higher levels of individuality, because individual selection will always tend to increase exploitation, and stronger group structure will tend to increase overall cooperation through kin selected benefits. Cheater specialization as dispersers offers simultaneous solutions to the evolution of cooperation in social groups and the origin of specialization of germ and soma in multicellular organisms.
Resumo:
BACKGROUND AND PURPOSE: Visual neglect is a frequent disability in stroke and adversely affects mobility, discharge destination, and length of hospital stay. It is assumed that its severity is enhanced by a released interhemispheric inhibition from the unaffected toward the affected hemisphere. Continuous theta burst transcranial magnetic stimulation (TBS) is a new inhibitory brain stimulation protocol which has the potential to induce behavioral effects outlasting stimulation. We aimed to test whether parietal TBS over the unaffected hemisphere can induce a long-lasting improvement of visual neglect by reducing the interhemispheric inhibition. METHODS: Eleven patients with left-sided visual neglect attributable to right hemispheric stroke were tested in a visual perception task. To evaluate the specificity of the TBS effect, 3 conditions were tested: 2 TBS trains over the left contralesional posterior parietal cortex, 2 trains of sham stimulation over the contralesional posterior parietal cortex, and a control condition without any intervention. To evaluate the lifetime of repeated trains of TBS in 1 session, 4 trains were applied over the contralesional posterior parietal cortex. RESULTS: Two TBS trains significantly increased the number of perceived left visual targets for up to 8 hours as compared to baseline. No significant improvement was found with sham stimulation or in the control condition without any intervention. The application of 4 TBS trains significantly increased the number of perceived left targets up to 32 hours. CONCLUSIONS: The new approach of repeating TBS at the same day may be promising for therapy of neglect.
Resumo:
Shifts in pollination syndromes involve coordinated changes in multiple floral traits. This raises the question of how plants can cope with rapid changes in pollinator availability by the slow process of accumulation of mutations in multiple genes. Here we study the transition from bee to hawkmoth pollination in the genus Petunia. Interspecific crosses followed by single locus introgressions were used to recreate putative intermediate evolutionary stages in the evolution of moth pollination. The effect of the loss/gain of petal color was asymmetric: it had no influence on the established pollinator but enhanced visitation by the new pollinator. Therefore, shifts in pollination syndromes may proceed through intermediate stages of reduced specialization and consequently enhanced reproductive assurance. The loss of petal color in moth-pollinated Petunia involves null mutations in a single regulatory gene, An2. Such simple genetic changes may be sufficiently rapid and frequent to ensure survival during pollinator failure.
Resumo:
Tonoplast, the membrane delimiting plant vacuoles, regulates ion, water and nutrient movement between the cytosol and the vacuolar lumen through the activity of its membrane proteins. Correct traffic of proteins from the endoplasmic reticulum (ER) to the tonoplast requires (i) approval by the ER quality control, (ii) motifs for exit from the ER and (iii) motifs that promote sorting to the tonoplast. Recent evidence suggests that this traffic follows different pathways that are protein-specific and could also reflect vacuole specialization for lytic or storage function. The routes can be distinguished based on their sensitivity to drugs such as brefeldin A and C834 as well as using mutant plants that are defective in adaptor proteins of vesicle coats, or dominant-negative mutants of Rab GTPases.
Resumo:
Land use and land use change affect deadwood amount, quality and associated biodiversity in forest ecosystems. Old growth or virgin forests, which are exceptionally rare in temperate Europe harbor more deadwood and associated fungal species than managed forests. Whether and how more recent abandonment of management, to reestablish more natural forests, affects deadwood amount and fungal diversity on deadwood is unknown. Our main aim was to compare deadwood amount, characteristics and deadwood inhabiting fungi in differently managed forest types typical for large areas of Central Europe. We sampled deadwood inhabiting fungi on 27 forest plots of 400 m2 each in three geographically distant regions in Germany. Three forest management types, namely managed coniferous, managed deciduous and unmanaged deciduous forests, were represented by nine plots each. In autumn 2008 we collected all fungal fruiting bodies on deadwood >7 cm of diameter. We found deadwood amounts and fungal species numbers in unmanaged forests to be lower than in managed forests, which we attributed to the lack of natural tree death during the short time since management abandonment of usually 10–30 years. However, rarefaction analysis among deadwood items in forest plots indicated a slightly higher species density in unmanaged forests, which may be the first signal of a positive effect on fungal species richness on deadwood after management was abandoned. Although the three study regions span a large geographical gradient, we did not detect differences in the fungal species composition or in deadwood amounts and patterns, which reflects the wide distribution of this group of organisms and points to consistent management procedures among study regions. A very clear composition difference however occurred between deciduous and coniferous wood showing species substrate specialization. We conclude that the amount of deadwood is the main driver of deadwood fungal species richness, and substrate diversity in terms of various decay degrees, deadwood tree species and deadwood size are also important. Thus, to promote species richness of deadwood fungi it is vital to enhance deadwood amounts and diversity
Resumo:
BACKGROUND: The origin of auditory hallucinations, which are one of the core symptoms of schizophrenia, is still a matter of debate. It has been hypothesized that alterations in connectivity between frontal and parietotemporal speech-related areas might contribute to the pathogenesis of auditory hallucinations. These networks are assumed to become dysfunctional during the generation and monitoring of inner speech. Magnetic resonance diffusion tensor imaging is a relatively new in vivo method to investigate the directionality of cortical white matter tracts. OBJECTIVE: To investigate, using diffusion tensor imaging, whether previously described abnormal activation patterns observed during auditory hallucinations relate to changes in structural interconnections between the frontal and parietotemporal speech-related areas. METHODS: A 1.5 T magnetic resonance scanner was used to acquire twelve 5-mm slices covering the Sylvian fissure. Fractional anisotropy was assessed in 13 patients prone to auditory hallucinations, in 13 patients without auditory hallucinations, and in 13 healthy control subjects. Structural magnetic resonance imaging was conducted in the same session. Based on an analysis of variance, areas with significantly different fractional anisotropy values between groups were selected for a confirmatory region of interest analysis. Additionally, descriptive voxel-based t tests between the groups were computed. RESULTS: In patients with hallucinations, we found significantly higher white matter directionality in the lateral parts of the temporoparietal section of the arcuate fasciculus and in parts of the anterior corpus callosum compared with control subjects and patients without hallucinations. Comparing patients with hallucinations with patients without hallucinations, we found significant differences most pronounced in the left hemispheric fiber tracts, including the cingulate bundle. CONCLUSION: Our findings suggest that during inner speech, the alterations of white matter fiber tracts in patients with frequent hallucinations lead to abnormal coactivation in regions related to the acoustical processing of external stimuli. This abnormal activation may account for the patients' inability to distinguish self-generated thoughts from external stimulation.
Resumo:
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Resumo:
High-resolution quantitative temperature records from continents covering glacial to interglacial transitions are scarce but important for understanding the climate system. We present the first decadal resolution record of continental temperatures in Central Europe during the last deglaciation (similar to 14,60010,600cal. yrB.P.) based on the organic geochemical palaeothermometer TEX86. The TEX86-inferred temperature record from Lake Lucerne (Vierwaldstattersee, Switzerland) reveals typical oscillations during the Late Glacial Interstadial, followed by an abrupt cooling of 2 degrees C at the onset of Younger Dryas and a rapid warming of 4 degrees C at the onset of the Holocene, within less than 350years. The remarkable resemblance with the Greenland and regional stable oxygen isotope records suggests that temperature changes in continental Europe were dominated by large-scale reorganizations in the northern hemispheric climate system.
Resumo:
Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.