969 resultados para Hammerstein equation
Resumo:
A primary purpose of this research is to design a gradient coil that is planar in construction and can be inserted within existing infrastructure. The proposed wave equation method for the design of gradient coils is novel within the field. it is comprehensively shown how this method can be used to design the planar x-, y-, and z-gradient wire windings to produce the required magnetic fields within a certain domain. The solution for the cylindrical gradient coil set is also elucidated. The wave equation technique is compared with the well-known target held method to gauge the quality of resultant design. In the case of the planar gradient coil design, it is shown that using the new method, a set of compact gradient coils with large field of view can be produced. The final design is considerably smaller in dimension when compared with the design obtained using the target field method, and therefore the manufacturing costs and materials required are somewhat reduced.
Resumo:
We consider a type of quantum electromechanical system, known as the shuttle system, first proposed by Gorelik [Phys. Rev. Lett. 80, 4526 (1998)]. We use a quantum master equation treatment and compare the semiclassical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunneling and shuttling regime can be measured directly in the spectrum of the noise. (c) 2006 American Institute of Physics.
Resumo:
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.
Resumo:
Studies have shown that an increase in arterial stiffening can indicate the presence of cardiovascular diseases like hypertension. Current gold standard in clinical practice is by measuring the blood pressure of patients using a mercury sphygmomanometer. However, the nature of this technique is not suitable for prolonged monitoring. It has been established that pulse wave velocity is a direct measure of arterial stiffening. However, its usefulness is hampered by the absence of techniques to estimate it non-invasively. Pulse transit time (PTT) is a simple and non-intrusive method derived from pulse wave velocity. It has shown its capability in childhood respiratory sleep studies. Recently, regression equations that can predict PTT values for healthy Caucasian children were formulated. However, its usefulness to identify hypertensive children based on mean PTT values has not been investigated. This was a continual study where 3 more Caucasian male children with known clinical hypertension were recruited. Results indicated that the PTT predictive equations are able to identify hypertensive children from their normal counterparts in a significant manner (p < 0.05). Hence, PTT can be a useful diagnostic tool in identifying hypertension in children and shows potential to be a non-invasive continual monitor for arterial stiffening.
Resumo:
A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.
Resumo:
The phenomenon of low-PMD fibres is examined through numerical simulations. Instead of the coarse-step method we are using an algorithm developed through the Manakov-PMD equation. With the integration of the Manakov-PMD equation we have access to the fibre spin which relates to the orientation of the birefringence. The simulation results produced correspond to the behaviour of a low-PMD spun fibre. Furthermore we provide an analytical approximation compared to the numerical data. © 2005 Optical Society of America.
Resumo:
The Manakov-PMD equation can be integrated with the same numerical efficiency as the coarse-step method by using precomputed M(Ω) matrices, which entirely avoids the somewhat ad-hoc rescaling of coefficients necessary in the coarse-step method.