848 resultados para HYDROGEN LINES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen gas is regarded as clean and renewable energy source, since it generates only water during combustion when used as fuel. It shows 2.75 times more energy content than any hydrocarbon and it can be converted into electrical, mechanical energy or heat. Inoculum sources have been successfully tested for hydrogen biological production in temperate climate countries as sludge treatment plants sewage, sludge treatment plant wastewater, landfill sample, among others. However, hydrogen biologic production with inoculum from environmental samples such as sediment reservoirs, especially in tropical countries like Brazil, is rarely investigated. Reservoirs and fresh water lake sediment may contain conditions for the survival of a wide variety of microorganisms which use different carbon sources mainly glucose and xylose, in the fermentation. Glucose is an easily biodegradable, present in most of the industrial effluents and can be obtained abundantly from agricultural wastes. A wide variety of wastewater resulting from agriculture, industry and pulp and paper processed from wood may contain xylose in its constitution. Such effluent contains glucose and xylose concentrations of about 2 g/L. In this sense, this work verified hydrogen biological production in anaerobic batch reactor (1L), at 37 ° C, initial pH 5.5, headspace with N2 (100%), Del Nery medium, vitamins and peptone (1 g/L), fed separately with glucose (2g/L) and xylose (2 g/L). The inoculum was taken from environmental sample (sediment reservoir Itupararanga - Ibiúna - SP-Brazil). It was previously purified in serial dilutions at H2 generation (10-5, 10-7, 10-10), and heat treated (90º C - 10 min) later to inhibited the H2 consumers. The maximum H2 generations obtained in both tests were observed at 552 h, as described below. At the reactors fed with glucose and xylose were observed, respectively, 9.1 and 8.6 mmol H2/L, biomass growth (0.2 and 0.2 nm); consumption of sugar concentrations 53.6% (1.1 glucose g/L) and 90.5% (1.8 xylose g/L); acetic acid generation (124.7 mg/L and 82.7 mg/L), butyric acid (134.0 mg/L and 230.4 mg/L) and there wasn’t methane generation in the reactors. Microscopic analysis of biomass in anaerobic reactors showed the predominance of Gram positive rods and rods with endospores, whose morphology is characteristic of H2-generating bacteria, in both tests. These species were selected from the natural environment. In DGGE analysis performed difference were observed between populations from inoculum and in tests. This analysis confirmed that some species of bacteria were selected which remained under the conditions imposed on the experiment. The efficiency of the pre-treatment of inoculum and the imposition of pH 5.5 inhibited methane-producing microorganisms and the consumers of H2. Therefore, the experimental conditions imposed allowed the attainment of bacterial consortium of producer H2 taken from an environmental sample with concentration of xylose and glucose similar to the ones of the industrial effluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To assess the initial cytotoxicity and the late phenotype marker expression of odontoblast-like cells (MDPC-23) subjected to less aggressive in-office bleaching therapies. Methodology A 17.5% hydrogen peroxide (H2O2) gel was applied for 45, 15 or 5 min to enamel/dentine discs adapted to trans-wells positioned over cultured MDPC-23 cells. No treatment was performed on the negative control. Immediately after bleaching, the cell viability, gene expression of inflammatory mediators and quantification of H2O2 diffusion were evaluated. The ALP activity, DSPP and DMP-1 gene expression and mineralized nodule deposition (MND) were assessed at 7, 14 or 21 days post-bleaching and analysed statistically with Mann–Whitney U-tests (α = 5%). Results H2O2 diffusion, proportional to treatment time, was observed in all bleached groups. Reductions of approximately 31%, 21% and 13% in cell viability were observed for the 45-, 15- and 5-min groups, respectively. This reduction was significant (P < 0.05) for the 45- and 15-min groups, which also presented significant (P < 0.05) over-expression of inflammatory mediators. The 45-min group was associated with significant (P < 0.05) reductions in DMP-1/DSPP expression at all periods, relative to control. The ALP activity and MND were reduced only in initial periods. The 15-min group had less intense reduction of all markers, with no difference to control at 21 days. Conclusions The 17.5% H2O2 applied to tooth specimens for 5 min caused no alteration in the odontoblast-like cells. When this gel was applied for 45 or 15 min, a slight cytotoxicity, associated with alterations in phenotypic markers, was observed. However, cells were able to recover their functions up to 21 days post-bleaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effect of the oxidative stress on human dental pulp cells (HDPCs) promoted by toxic concentrations of hydrogen peroxide (H2O2) on its odontoblastic differentiation capability through time. Methods HDPCs were exposed to two different concentrations of H2O2 (0.1 and 0.3 μg/ml) for 30 min. Thereafter, cell viability (MTT assay) and oxidative stress generation (H2DCFDA fluorescence assay) were immediately evaluated. Data were compared with those for alkaline phosphatase (ALP) activity (thymolphthalein assay) and mineralized nodule deposition (alizarin red) by HDPCs cultured for 7 days in osteogenic medium. Results A significant reduction in cell viability and oxidative stress generation occurred in the H2O2-treated cells when compared with negative controls (no treatment), in a concentration-dependent fashion. Seven days after H2O2 treatment, the cells showed significant reduction in ALP activity compared with negative control and no mineralized nodule deposition. Conclusion Both concentrations of H2O2 were toxic to the cells, causing intense cellular oxidative stress, which interfered with the odontogenic differentiation capability of the HDPCs. Clinical significance The intense oxidative stress on HDPCs mediated by H2O2 at toxic concentrations promotes intense reduction on odontoblastic differentiation capability in a 7-day evaluation period, which may alter the initial pulp healing capability in the in vivo situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholinergic activation of the medial septal area (MSA) with carbachol produces thirst, natriuresis, antidiuresis and pressor response. In the brain, hydrogen peroxide (H2O2) modulates autonomic and behavioral responses. In the present study, we investigated the effects of the combination of carbachol and H2O2 injected into the MSA on water intake, renal excretion, cardiovascular responses and the activity of vasopressinergic and oxytocinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Furthermore, the possible modulation of carbachol responses by H2O2 acting through K+ATP channels was also investigated. Male Holtzman rats (280–320 g) with stainless steel cannulas implanted in the MSA were used. The pre-treatment with H2O2 in the MSA reduced carbachol-induced thirst (7.9 ± 1.0, vs. carbachol: 13.2 ± 2.0 ml/60 min), antidiuresis (9.6 ± 0.5, vs. carbachol: 7.0 ± 0.8 ml/120 min,), natriuresis (385 ± 36, vs. carbachol: 528 ± 46 μEq/120 min) and pressor response (33 ± 5, vs. carbachol: 47 ± 3 mmHg). Combining H2O2 and carbachol into the MSA also reduced the number of vasopressinergic neurons expressing c-Fos in the PVN (46.4 ± 11.2, vs. carbachol: 98.5 ± 5.9 c-Fos/AVP cells) and oxytocinergic neurons expressing c-Fos in the PVN (38.5 ± 16.1, vs. carbachol: 75.1 ± 8.5 c-Fos/OT cells) and in the SON (57.8 ± 10.2, vs. carbachol: 102.7 ± 7.4 c-Fos/OT cells). Glibenclamide (K+ATP channel blocker) into the MSA partially reversed H2O2 inhibitory responses. These results suggest that H2O2 acting through K+ATP channels in the MSA attenuates responses induced by cholinergic activation in the same area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to demonstrate through a case report, a proposed treatment for discolored teeth, with and without pulp vitality, by the technique of external and internal tooth bleaching with hydrogen peroxide to 35% Lase Peroxide Sensy (DMC) using Whitening Lase II Device (DMC), and a silicone guide (3M ESPE) in the palatine portion of the upper teeth. In this clinical case, the patient had darkened dental elements 11 and 22, and dissatisfaction with the coloring of other elements. It was observed that the techniques used and the materials chosen allowed for an excellent aesthetic result, with technical simplicity and low cost, and minimal occurrence of signs and symptoms