944 resultados para HIGH DENSITY LIPOPROTEIN
Resumo:
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKB beta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKB alpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKB beta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKB beta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKB beta in insulin-stimulated glucose transport in adipocytes.
Resumo:
The origin of M32, the closest compact elliptical galaxy (cE), is a long-standing puzzle of galaxy fort-nation in the Local Group. Our N-body/smoothed particle hydrodynamics simulations suggest a new scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical galaxy. As a low-luminosity spiral galaxy plunges into the central region of M31, most of the outer stellar and gaseous components of its disk are dramatically stripped as a result of M31's tidal field. The central bulge component, on the other hand, is just weakly influenced by the tidal field, owing to its compact configuration, and retains its morphology. M31's strong tidal field also induces rapid gas transfer to the central region, triggers a nuclear starburst, and consequently forms the central high-density and more metal-rich stellar populations with relatively young ages. Thus, in this scenario, M32 was previously the bulge of a spiral galaxy tidally interacting with M31 several gigayears ago. Furthermore, we suggest that cE's like M32 are rare, the result of both the rather narrow parameter space for tidal interactions that morphologically transform spiral galaxies into cE's and the very short timescale (less than a few times 10(9) yr) for cE's to be swallowed by their giant host galaxies (via dynamical friction) after their formation.
Resumo:
In this study, the pattern of movement of young male and female rabbits and the genetic structures present in adult male and female populations in four habitats was examined. The level of philopatry in young animals was found to vary between 18-90% for males and 32-95% for females in different populations. It was skewed, with more males dispersing than females in some but not all populations. Analysis of allozyme data using spatial autocorrelation showed that adult females from the same social group, unlike males, were significantly related in four of the five populations studied. Changes in genetic structure and rate of dispersal were measured before and during the recovery of a population that was artificially reduced in size. There were changes in the rate and distance of dispersal with density and sex. Subadults of both sexes moved further in the first year post crash (low density) than in the following years. While the level of dispersal for females was lower than that of the males for the first 3 years, thereafter (high density) both sexes showed similar, low levels of dispersal (20%). The density at which young animals switch behaviour between dispersal and philopatry differed for males and females. The level of genetic structuring in adult females was high in the precrash population, reduced in the first year post crash and undetectable in the second year. Dispersal behaviour of rabbits both affects the genetic structure of the population and changes with conditions. Over a wide range of levels of philopatry, genetic structuring is present in the adult female, but not the male population. Consequently, though genetic structuring is present, it does not lead to inbreeding. More long-distance movements are found in low-density populations, even though vacant warrens are available near birth warrens. The distances moved decreased as density increased. Calculation of the effective population size (N-e) shows that changes in dispersal distance offset changes in density, so that N-e remains constant.
Resumo:
Statins have been the mainstay of lipid-lowering therapy since their introduction. However, as lower LDL cholesterol targets are sought, adjunct therapies are becoming increasingly important. Few patients reach new targets with statin monotherapy. We propose that the cholestanol: cholesterol ratio can be used to guide lipid-lowering therapy and result in greater numbers of patients reaching target LDL cholesterol. By determining whether a patient is mainly a synthesizer or absorber of cholesterol, customized regimens can be used and are expected to improve patient outcomes and minimize costs of treatment. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: The aim of this article is to describe the anatomy of the cavernous sinus and to provide a guide for use when performing surgery in this complex area. Clinical cases are used to illustrate routes to the cavernous sinus and its contents and to demonstrate how the cavernous sinus can be used as a pathway for exposure of deeper structures. METHODS: Thirty cadaveric cavernous sinuses were examined using X3 to X40 magnification after the arteries and veins were injected with colored silicone. Distances between the entrance of the oculomotor and trochlear nerves and the posterior clinoid process were recorded. Stepwise dissections (if the cavernous sinuses, performed to demonstrate the intradural and extradural routes, are accompanied by intraoperative photographs of those approaches. RESULTS: The anatomy of the cavernous sinus is complex because of the high density of critically important neural and vascular structures. Selective cases demonstrate how a detailed knowledge of cavernous sinus anatomy can provide for safer surgery with low morbidity. CONCLUSION: A precise understanding of the bony relationships and neurovascular contents of the cavernous sinus, together with the use of cranial base and microsurgical techniques, has allowed neurosurgeons to approach the cavernous sinus with reduced morbidity and mortality, changing the natural history of selected lesions in this region. Complete resection of cavernous sinus meningiomas has proven to be difficult and, in many cases, impossible without causing significant morbidity. However, surgical reduction of such lesions enhances the chances for success of subsequent therapy.
Resumo:
In this study, blood serum trace elements, biochemical and hematological parameters were obtained to assess the health status of an elderly population residing in So Paulo city, SP, Brazil. Results obtained showed that more than 93% of the studied individuals presented most of the serum trace element concentrations and of the hematological and biochemical data within the reference values used in clinical laboratories. However, the percentage of elderly presenting recommended low density lipoprotein (LDL) cholesterol concentrations was low (70%). The study indicated positive correlation between the concentrations of Zn and LDL-cholesterol (p < 0.06).
Resumo:
Objective. Previously we showed that after intravenous injection a lipidic nanoemulsion concentrates in breast carcinoma tissue and other solid tumors and may carry drugs directed against neoplastic tissues. Use of the nanoemulsion decreases toxicity of the chemotherapeutic agents without decreasing the anticancer action. Currently, the hypothesis was tested whether the nanoemulsion concentrates in breast carcinoma tissue after locoregional injection. Methods. Three different techniques of injection of the nanoemulsion were tested in patients scheduled for surgical treatment: G1 (n=4) into the mammary tissue 5 cm away from the tumor; G2 (n=4) into the peritumoral mammary tissue; G3 (n=6) into the tumoral tissue. The nanoemulsion labeled with radioactive cholesteryl oleate was injected 12 h before surgery; plasma decay of the label was determined from blood samples collected over 24 h and the tissue fragments excised during the surgery were analyzed for radioactivity uptake. Results. Among the three nanoemulsion injection techniques, G3 showed the greatest uptake (data expressed in c.p.m/g of tissue) by the tumor (44,769 +/- 54,749) and by the lymph node (2356 +/- 2966), as well as the greatest concentration in tumor compared to normal tissue (844 +/- 1673). In G1 and G2, uptakes were, respectively, tumor: 60 +/- 71 and 843 +/- 1526; lymph node: 263 +/- 375 and 102 +/- 74; normal tissue: 139 +/- 102 and 217 +/- 413. Conclusions. Therefore, with intralesional injection of the nanoemulsion, a great concentration effect can be achieved. This injection technique may be thus a promising approach for drug-targeting in neoadjuvant chemotherapy in breast cancer treatment. (C) 2008 Published by Elsevier Inc.
Resumo:
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of (14)C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [(3)H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [(3)H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [(3)H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Resumo:
Atherosclerosis is an inflammatory disease, leading to the formation of pro-inflammatory and pro-oxidative lipids that generate an immune response. Several antigens have been shown to activate the immune response and affect the development of atherogenesis. Systemic lupus erythematosus is an autoimmune and inflammatory disease strongly associated with premature development of atherosclerotic plaques. Modulation of the immune system could represent a useful approach to prevent and/or treat atherosclerosis. A vaccination-based approach might be a useful, effective tool in the modern arsenal of cardiovascular therapies and could be used on a large scale at a low cost. In non-systemic lupus erythematosus populations, vaccines against oxidized low-density lipoprotein, beta-2-glycoprotein I, heat shock proteins, lipoproteins, cholesterol, molecules involved in cholesterol metabolism, and other molecules (CD99, vascular endothelial growth factor-receptor, and interleukin-2) have been tested, with promising results. However, there are no studies of vaccination against atherosclerosis in systemic lupus erythematosus. Lupus (2009) 18, 1209-1212.
Resumo:
Background: This pilot study evaluates the association of severe periodontitis with pulse wave velocity (PWV), carotid artery intima-medial thickness (IMT), and clinical, metabolic, and atherogenic inflammatory markers in 79 subjects with heterozygous familial hypercholesterolemia (hFH). All subjects were free of previous vascular disease manifestations. Methods: The body mass index (in kilograms per square meter), plasma lipids, glucose, C-reactive protein, and white blood cell counts were evaluated. After full-mouth periodontal examinations, patients were categorized into the severe periodontitis group (SPG) or non-severe periodontitis group (NSPG). Results: The SPG showed significantly higher values of cholesterol-year scores, triglycerides, glucose, PWV, IMT, and diastolic blood pressure (DBP) (P <= 0.05) than the NSPG. After adjustment for traditional risk factors for atherosclerosis, only the association between severe periodontitis and DBP (odds ratio: 3.1; 95% CI: 1.1 to 8.5; P = 0.03) was confirmed. Conclusion: In individuals with hFH, severe periodontitis was associated with a higher DBP, which suggests that severe periodontitis, itself, may contribute to the increased cardiovascular risk profile in this population. J Periodontol 2011;82:683-688.
Resumo:
Aim of the study This study sought to evaluate the effect of nLDL concentrations on monocyte adhesion molecule expression in hypercholesterolemic patients with stable corollary artery disease (CAD) and to determine whether lipid-lowering therapy with simvastatin Would change this effect. Methods Blood samples from patients with hypercholesterolemia (mean LDL 152 mg/dL) and CAD (HC, n = 23) were collected before and after a 12-week treatment with 40 mg of simvastatin. Healthy individuals (mean LDL 111 mg/dL) were used as controls (CT, n = 15). Isolated nLDL, at a fixed concentration of 100 mg/dL, was added to monocyte suspensions obtained before and after the simvastatin treatment. Monocyte activation was determined by changes in cellular adhesion molecule expression. Results In response to nLDL, CD11b and CD14 adhesion molecule expression was higher in HC patients than in CT patients before treatment (174.2+/-8.4 vs 102.2+/-6.3, P<0.03 and 140.4+/-5.0 vs 90.4+/-6.7, P<0.04). After simvastatin treatment, CD11b expression decreased to 116.9+/-12.5 (P< 0.03) and CD14 expression to 107.5+/-6.2 (P<0.04). Alternatively, L-selectin expression was lower in HC patients than in CT patients before therapy (46.0+/-3.5 vs 62.1+/-5.5, P<0.04), and it increased markedly after lipid reduction to 58.7+/-5.0 (P<0.04 vs baseline). After simvastatin treatment, LDL was reduced to mean 101.5 mg/dL. Conclusions These data demonstrate that monocytes from HC patients are more prone to marked nLDL-mediated changes of adhesion molecule expression than monocytes from controls. Simvastatin is capable of inhibiting such nLDL effects. This proinflammatory response to nLDL may have a role in the early onset of atherosclerosis.
Resumo:
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (K-p') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and K-p' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.
Resumo:
Synthetic somatostatin (SST) analogues have been used in the preparation of receptor-specific radiopharmaceuticals for diagnostic and therapy of neuroendocrine tumors. This work studied the labeling conditions with (99m)Tc and biological distribution in Swiss mice of two SST analogs (HYNIC-Tyr(3)-Octreotide and HYNIC-Tyr(3)-Octreotate) and compared the biodistribution pattern with (111)In-DTPA-Octreotide. Biological distribution studies were performed after injection of radiopharmaceuticals on Swiss mice. Labeling procedures resulted on high radiochemical yield for all three preparations and the labeled products presented high in vitro stability. Biological distribution studies evidenced similar general biodistribution of (99m)Tc-labeled peptides when compared with indium-labeled peptide with fast blood clearance and elimination by urinary tract. Kidneys uptake of (99m)Tc-HYNIC-TATE are similar to (111)In-DTPA-Octreotide, and both are significantly higher than (99m)Tc-HYNIC-OCT. All labeled peptides presented similar uptake on liver, but the retention in time at intestines, particularly at large intestine, was more expressive for (111)In-labeled peptide. The %ID of (99m)Tc-HYNIC-OCT and (99m)Tc-HYNIC-TATE in organs with high density of SST receptors like pancreas and adrenals were significant and similar to obtained for (111)In-DTPA-Octreotide, confirming the affinity of these radiopharmaceuticals for the receptors.
Resumo:
In a previous study, we found that the cytokine (human) leukemia inhibitory factor (hLIF) significantly reduced plasma cholesterol levels and the accumulation of lipid in aortic tissues of cholesterol-fed rabbits after 4 weeks of treatment. The mechanisms by which this occurs were investigated in the present study. This involved examining the effect of hLIF on (1) the level of plasma cholesterol at different times throughout the 4-week treatment and diet period; (2) smooth muscle cell (SMC) and macrophage-derived foam cell formation in vitro; and (3) LDL receptor expression and uptake in the human hepatoma cell line HepG2. At time zero, an osmotic minipump (2-mL capacity; infusion rate, 2.5 mu L/h; 28 days) containing either hLIF (30 mu g.kg(-1).d(-1)) or saline was inserted into the peritoneal cavity of New Zealand White rabbits (N=24). Rabbits were divided into four groups of six animals each. Group 1 received a normal diet/saline; group 2, a normal diet/hLIF; group 3, a 1% cholesterol diet/saline; and group 4, a 1% cholesterol diet/hLIF. hLIF had no effect on the plasma lipids or artery wall of group 2 rabbits (normal diet). However, in group 4 rabbits, plasma cholesterol levels and the percent surface area of thoracic aorta covered by fatty streaks was decreased by approximate to 30% and 80%, respectively, throughout all stages of the 4-week treatment period. In vitro, hLIF failed to prevent lipoprotein uptake by either SMCs or macrophages (foam cell formation) when the cells were exposed to P-VLDL for 24 hours. In contrast, hLIF (100 ng/mL) added to cultured human hepatoma HepG2 cells induced a twofold or threefold increase in intracellular lipid accumulation in the medium containing 10% lipoprotein-deficient serum or 10% fetal calf serum, respectively. This was accompanied by a significant non-dose-dependent increase in LDL receptor expression in hLIF-treated HepG2 cells incubated with LDL (20 mu g/mL) when compared with controls (P
Resumo:
Glioblastoma multiforme ( GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high- density oligonucleotide arrays, and performed gene expression analyses using next- generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 ( IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.