983 resultados para HEMIPAGURUS SMITH


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This communication describes an improved one-step solid-phase extraction method for the recovery of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) from human plasma with reduced coextraction of endogenous plasma constituents, compared to that of the authors' previously reported method. The magnitude of the peak caused by endogenous plasma components in the chromatogram that eluted immediately before the retention time of M3G has been reduced (similar to 80%) significantly (p < 0.01) while achieving high extraction efficiencies for the compounds of interest, viz morphine, M6G, and M3G (93.8 +/- 2.5, 91.7 +/- 1.7, and 93.1 +/- 2.2%, respectively). Furthermore, when the improved solid-phase extraction method was used, the extraction cartridge-derived late-eluting peak (retention time 90 to 100 minutes) reported in our previous method, was no longer present in the plasma extracts. Therefore the combined effect of reducing the recovery of the endogenous components of plasma that chromatographed just before the retention time of M3G and the removal of the late-eluting, extraction cartridge-derived peak has resulted in a decrease in the chromatographic run-time to 20 minutes, thereby increasing the sample throughput by up to 100%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation was designed to examine the antinociceptive activity in rats of 3-O-acyl prodrugs of M6S relative to the parent drug, after intravenous and intramuscular injection, using the tail flick latency test of antinociception. M6S, 3-acetylmorphine-6-sulfate (3AcM6S), 3-propionylmorphine-6-sulfate (3PrM6S), 3-butanoylmorphine-6-sulfate (3BuM6S) and 3-heptanoylmorphine-6-sulfate (3HpM6S) were administered by the IV route in a dose of 4.10 mu mol/kg. Relatively high levels of antinociception (>40% Maximum Possible Effect) were achieved following administration of M6S, 3AcM6S and 3PrM6S, whereas insignificant antinociception (<20%MPE) was achieved following administration of 3BuM6S or 3HpM6S. Although the mean duration of action for 3AcM6S (6 h) was longer than for M6S or 3PrM6S (4 h), the mean area (+/- S.E.M.) under the degree of antinociception versus time curve (AUG) for 3AcM6S (151.6 +/- 6.9%MPE h) was not significantly different (p <0.05) from that for M6S (120.8 +/- 32.7%MPE h) or for 3PrM6S (106.0 +/- 21.3%MPE h). The mean ED50 (range) doses for M6S, 3AcM6S and 3PrM6S were calculated to be 4.16 (3.61-4.48), 4.32 (3.55-5.09) and 4.54 (4.21-4.79) mu mol/kg, respectively. Preliminary studies were conducted on potential long-acting formulations containing 8 x ED50 doses of M6S and the 3-acetyl and 3-propionyl esters suspended in soybean oil. These showed that 3PrM6S gave a greater AUC (mean + S.E.M.) (1087.4 +/- 97.4%MPE h) and longer duration of action (20 h) than did M6S (613.1 +/- 155.9%MPE h; 10 h duration) or 3AcM6S (379.3 + 114.2%MPE h: 8 h duration). Further studies are needed to more fully investigate these findings. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the adult male Sprague-Dawley rat, a species commonly used to study tolerance to the antinociceptive effects of morphine, approximate to 10% of the morphine dose is metabolized to normorphine-3-glucuronide (NM3G). In contrast, NM3G is a relatively minor metabolite of morphine in human urine reportedly accounting for approximate to 1% of the morphine dose. To date, the pharmacology of NM3G has been poorly characterized. Therefore, our studies were designed to determine whether the intrinsic pharmacology of NM3G is similar to that of morphine-3-glucuronide (M3G), the major metabolite of morphine, which has been shown to be a potent central nervous system (CNS) excitant and to attenuate the intrinsic antinociceptive effects of morphine in rats. The CNS excitatory potency of NM3G was found to be approximately half that of M3G, inducing convulsions in rats at intracerebroventricular (i.c.v.) doses of greater than or equal to 16.8 nmol. When administered before morphine (70 nmol i.c.v.), NM3G (8.9 nmol i.c.v.) attenuated antinociception for up to 2 hr, but when administered after morphine, no significant attenuation of morphine antinociception was observed. Thus, after i.c.v. administration, NM3G like M3G, is a potent CNS excitant and antianalgesic in the rat. NM3G may therefore play a role in the development of tolerance to the antinociceptive effects of morphine in the rat as has been proposed previously for M3G.