975 resultados para Grid Generation
Resumo:
138 p.
Resumo:
The heat generation in a flashlamp-pumped Nd:glass disk amplifier is studied by the simulation of the whole pumping process, which is based on the ray-tracing method. The results of temperature rise distribution as well as gain distribution are presented. The evolution of heat generation in disk during the pumping process is discussed in detail. Some main factors related with the thermal effect, such as the quantum efficiency, fluorescence lifetime, and pulse duration, are investigated through studying the ratio of the heat generation to energy storage in the gain medium. The influence of each parameter on heat generation is studied carefully, and the results provide ways to decrease the heat generation during the pumping process. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The pulse-shaping technique has found widespread applications in nonlinear optics and material processing. Experimental research on laser-induced plasma shutter to control the 532 nm pulse width is conducted. The impacts of the total pulse output energy on pulse compression are investigated, and a useful conclusion can be drawn that there exists an optimal value of pulse energy at which the shortest output pulse of 3.23 ns can be obtained without a device for delay-time. Once the device for delay-time is employed to change the optical differences between two laser paths, the pulse width can be further shortened to 1.51 ns. In short, the 1.5-12 ns width-tunable 532 nm laser pulses have been obtained by adopting the laser-induced plasma shutter technique. (C) 2007 Elsevier GmbH. All rights reserved.
Generation of 1.5–12ns width-tunable 532nm pulses by adopting laser-induced plasma shutter technique
Resumo:
We report on photoinduced second-harmonic generation (SHG) in chalcogenide glasses. Fundamental and second-harmonic waves from a nanosecond pulsed Nd:YAG laser were used to induce second-order nonlinearity in chalcogenide glasses. The magnitude of SHG in 20Ge . 20As . 60S glass was 10(4) larger than that of tellurite glass with a composition of 15Nb(2)O(5) . 85TeO(2) (mol.%). Moreover, no apparent decay of photoinduced SHG in 20Ge . 20As . 60S glass was observed after optical poling at room temperature. We suggest that the large and stable value of X-(2) is due to the induced defect structures and large X-(3) of the chalcogenide glasses. (C) 2001 Optical Society of America