932 resultados para Greenhouse plants.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green roof plants alter the microclimate of building roofs and may improve roof insulation. They act by providing cooling by shading, but also through transpiration of water through their stomata. However, leaf surfaces can become warmer when plants close the stomata and decrease water loss in response to drying substrate (typically associated with green roofs during summers), also reducing transpirational cooling. By using a range of contrasting plant types (Sedum mix – an industry green roof ‘standard’, Stachys byzantina, Bergenia cordifolia and Hedera hibernica) we tested the hypothesis that plants differ in their ‘cooling potential’. We firstly examined how leaf morphology influenced leaf temperature and how drying substrate altered that response. Secondly, we investigated the relationship between leaf surface temperatures and the air temperatures immediately above the canopies (i.e. potential to provide aerial cooling). Finally we measured how the plant type influenced the substrate temperature below the canopy (i.e. potential for building cooling). In our experiments Stachys outperformed the other species in terms of leaf surface cooling (even in drying substrate, e.g. 5 oC cooler compared with Sedum), substrate cooling beneath its canopy (up to 12 oC) and even - during short intervals over hottest still periods - the air above the canopy (up to 1 oC, when soil moisture was not limited). We suggest that the choice of plant species on green roofs should not be entirely dictated by what survives on the shallow substrates of extensive systems, but consideration should be given to supporting those species providing the greatest eco-system service potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of halving greenhousegasemissions from hotels by 2030 has been studied as part of the Carbon Vision Buildings Programme. The aim of that programme was to study ways of reducing emissions from the existing stock because it will be responsible for the majority of building emissions over the next few decades. The work was carried out using detailed computer simulation using the ESP-r tool. Two hotels were studied, one older and converted and the other newer and purpose-built, with the aim of representing the most common UKhotel types. The effects were studied of interventions expected to be available in 2030 including fabric improvements, HVAC changes, lighting and appliance improvements and renewable energy generation. The main finding was that it is technically feasible to reduce emissions by 50% without compromising guest comfort. Ranking of the interventions was problematical for several reasons including interdependence and the impacts on boiler sizing of large reductions in the heating load

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing1. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events2 such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 17663, 4, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a ‘wake-up call’ to the impacts of climate change at the time7, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail8, 9 to account fully for the complex hydrometeorology4, 10 associated with flooding. Here we present a multi-step, physically based ‘probabilistic event attribution’ framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing11, 12, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrafluoromethane, CF4, is powerful greenhouse gas, and the possibility of storing it in microporous carbon has been widely studied. In this paper we show, for the first time, that the results of molecular simulations can be very helpful in the study of CF4 adsorption. Moreover, experimental data fit to the results collected from simulations. We explain the meaning of the empirical parameters of the supercritical Dubinin–Astakhov model proposed by Ozawa and finally the meaning of the parameter k of the empirical relation proposed by Amankwah and Schwarz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One definition of food security is having sufficient, safe, and nutritious food to meet dietary needs. This paper highlights the role of plant mineral nutrition in food production, delivering of essential mineral elements to the human diet, and preventing harmful mineral elements entering the food chain. To maximise crop production, the gap between actual and potential yield must be addressed. This gap is 15–95% of potential yield, depending on the crop and agricultural system. Current research in plant mineral nutrition aims to develop appropriate agronomy and improved genotypes, for both infertile and productive soils, that allow inorganic and organic fertilisers to be utilised more efficiently. Mineral malnutrition affects two-thirds of the world's population. It can be addressed by the application of fertilisers, soil amelioration, and the development of genotypes that accumulate greater concentrations of mineral elements lacking in human diets in their edible tissues. Excessive concentrations of harmful mineral elements also compromise crop production and human health. To reduce the entry of these elements into the food chain, strict quality requirements for fertilisers might be enforced, agronomic strategies employed to reduce their phytoavailability, and crop genotypes developed that do not accumulate high concentrations of these elements in edible tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs) and Ozone Depleting Substances (ODSs). The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHGrelated effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secular trends of daily precipitation characteristics are considered in the transient climate change experiment with a coupled atmosphere-ocean general circulation model ECHAM4/OPYC3 for 1900-2099. The climate forcing is due to increasing concentrations of the greenhouse gases in the atmosphere. Mean daily precipitation, precipitation intensity, probability of wet days and parameters of the gamma distribution are analyzed. Particular attention is paid to the changes of heavy precipitation, Analysis of the annual mean precipitation trends for 1900-1999 revealed general agreement with observations with significant positive trends in mean precipitation over continental areas. In the 2000-2099 period precipitation trend patterns followed the tendency obtained for 1900-1999 but with significantly increased magnitudes. Unlike the annual mean precipitation trends for which negative values were found for some continental areas, the mean precipitation intensity and scale parameter of the fitted gamma distribution increased over all land territories . Negative trends in the number of wet days were found over most of the land areas except high latitudes in the Northern Hemisphere. The shape parameter of the gamma distribution in general revealed a slight negative trend in the areas of the precipitation increase. Investigation of daily precipitation revealed an unproportional increase of heavy precipitation events for the land areas including local maxima in Europe and the eastern United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An El Niño-like steady response is found in a greenhouse warming simulation resulting from coupled ocean-atmosphere dynamical feedbacks similar to those producing the present-day El Niños. There is a strong negative cloud-radiation feedback on the sea surface temperature (SST) anomaly associated with this enhanced eastern equatorial Pacific warm pattern. However, this negative feedback is overwhelmed by the positive dynamical feedbacks and cannot diminish the sensitivity of the tropical SST to enhanced greenhouse gas concentrations. The enhanced eastern-Pacific warming in the coupled ocean-atmosphere system suggests that coupled dynamics can strengthen this sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Asian summer monsoon response to global warming is investigated by a transient green-house warming integration with the ECHAM4/OPYC3 CGCM. It is demonstrated that increases of greenhouse gas concentrations intensify the Asian summer monsoon and its variability. The intensified monsoon results mainly from an enhanced land-sea contrast and a northward shift of the convergence zone. A gradual increase of the monsoon variability is simulated from year 2030 onwards. It seems to be connected with the corresponding increase of the sea surface temperature variability over the tropical Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a high resolution atmospheric model at T106 resolution, for studying the influence of greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al. The sea surface temperature anomalies have been taken from a previous transient climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms, at the time when the CO2 concentration in the atmosphere had doubled, agrees in geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern Hemisphere. The main reason to this, appear to be connected to changes in the large scale circulation, such as a weaker Hadley circulation and stronger upper air westerlies. The low level vorticity in the hurricane genesis regions is generally reduced compared to the present climate, while the vertical tropospheric wind shear is somewhat increased. Most tropical storm regions indicate reduced surface windspeeds and a slightly weaker hydrological cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes.