997 resultados para Green Sulfur Bacteria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida was investigated in batch experiments. The influence of pH, algal dosage, initial Cr(VI) concentration, temperature and coexisting anions on removal efficiencies of C. albida was studied. Cr(VI) removal process was influenced significantly by the variation of pH, and the optimum pH was chosen at a range of 1.0-3.0. The optimum algal dosage 2 g/L was used in the experiment. The removal rate of Cr(VI) was relatively rapid in the first 60 min, but then the rate decreased gradually. Removal mechanism was studied by analyzing Cr(VI) and total Cr in the solution. Biosorption and bioreduction were involved in the Cr(VI) removal. Biosorption of Cr(VI) was the first step. followed by Cr(VI) bioreduction and Cr(III) biosorption on the algal biomass. Actual industrial wastewater was used to evaluate the practicality of the biomass C. albida. From a practical viewpoint, the abundant and economic biomass C. albida could be used for removal of Cr(VI) from wastewater by the reduction of toxic Cr(VI) to less toxic Cr(III). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new halogenated biindole and a new apo-carotenone have been isolated from the ethanolic extract of the green alga Chaetomorpha basiretorsa Sethcell. On the basis of chemical and spectroscopic methods including 2D NMR technique, their structures have been elucidated as 4,4'-dichloro-5,5'-dibromo-7,7'-dimethoxy-2,2'-bi-1H-indole and 1'S*,4R*-8-(4'-hydroxy-2',6',6'-trimethylcyclohex-2-enyl)-6-methyloct-3E,5E,7E-trien-2-one, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol(-1) by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C-O could combine strongly with Cu2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298 K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, C=O and C-O could combine intensively with Pb(II). (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical investigation of the ethanol extract of the marine green alga Chaetomorpha basiretorsa Setchell led to the isolation of a new sterol stigmast-4,28-dien-3 alpha 6 beta-diol 1 in addition to the five known sterols of beta-lawsaritol 2, saringosterol 3, 24-hydroperoxy-24-vinyl - cholesterol 4, beta-stigmasterol 5, 29-hydroxystigmasta-5, 24(28) -dien-3 beta-ol 6. Compounds were isolated by normal phase silica gel and Sephadex LH - 20 gel colum chromatography, reverse phase HPLC and recrystalization. Their structures were elucidated by spectroscopic methods including MS, IR 1D/2D NMR and X-ray analysis. Cytotoxicity of compounds was screened by using the standard WIT method. All these compounds were isolated from the green alga Chaetomorpha basiretorsa Setchell for the first time and they were inactive (50% inhibitory concentration was greater than 10 mu g /cm(3)) against KB, Bel -7402, PC - 3M, Ketr 3 and MCF - 7 cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six steroids have been isolated from ethanolic extract of green alga Chaetomorpha basiretorsa Setchell by a combination of repeated normal phase silica gel and Sephadex LH-20 gel column chromatography as well as recrystallization. Using spectroscopic methods including MS and NMR, their structures were determined as beta-lawsaritol (1), saringosterol (2), 24-hydroperoxy-24-vinyl-cholesterol (3), beta-stigmasterol (4), stigmast-4-en-3 alpha, 6 beta-diol (5), 29-hydroxystigmasta-5, 24 (28)-dien-3 beta-ol (6). All these compounds were obtained from this genus for the first time and they were inactive (IC50 > 10 mu g /ml) against KB, Bel-7402, PC-3M, Ketr 3 and MCF-7 cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosorption of Cu2+ and Pb2+ by Cladophora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/ g for Cu2+ and 0.96 mmol/ g for Pb2+ at 298K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/ mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo- second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na(2)EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the intestinal microbiota of kuruma shrimp (Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptounclecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-) were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (RI) increased with increasing SRB concentration. A linear relationship between R-ct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7) cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost. and time-saving monitoring of microbial populations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacteria in the anaerobic biofilm on rusted carbon steel immersed in natural seawater were characterized by culturing and molecular biology techniques. Two types of anaerobic bacterium, sulfate-reducing bacteria (SRB) Desulfovibrio caledoniensis and iron-reducing bacteria Clostridium sp. uncultured were found. The compositions of the rust layer were also analyzed and we found that iron oxide and sulfate green rust were the major components. To investigate the corrosion mechanisms, electrochemical impedance spectra was obtained based on the isolated sulfate-reducing bacteria and mixed bacteria cultured from rust layer in laboratory culture conditions. We found that single species produced iron sulfide and accelerated corrosion, but mixed species produced sulfate green rust and inhibited corrosion. The anaerobic corrosion mechanism of steel was proposed and its environmental significance was discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of the growing process of sulfate-reducing bacteria (SRB) in seawater system on the medium state and corrosion behavior of carbon steel were studied by detecting solution state parameters and using corrosion electrochemical methods. The growing process of SRB in the seawater shows the three stages of growing, death and residual phases. The solution state parameters of the concentration of sulfide, the pH value and the redox potential changed during the three stages of the SRB growing process. And the corrosion rate of D36 carbon steel was accelerated during the growing phase and stable during the death and residual phases. The results indicate that the medium state and the corrosion rate of the steel do not depend on the number of active SRB, but depend on the accumulation of the metabolism products of SRB. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast, sensitive and reliable potentiometric stripping analysis (PSA) is described for the selective detection of the marine pathogenic sulfate-reducing bacterium (SRB). Desulforibrio caledoiensis. The chemical and electrochemical parameters that exert influence on the deposition and stripping of lead ion, such as deposition potential, deposition time and pH value were carefully studied. The concentration of SRB was determined in acetate buffer solution (pH 5.2) under the optimized condition (deposition potential of -1.3 V. deposition time of 250 s, ionic strength of 0.2 mol L-1 and oxidant mercury (II) concentration of 40 mg L-1). A linear relationship between the stripping response and the logarithm of the bacterial concentration was observed in the range of 2.3 x 10 to 2.3 x 10(7) cfu mL(-1). In addition, the potentiometric stripping technique gave a distinct response to the SRB, but had no obvious response to Escherichia coli. The measurement system has a potential for further applications and provides a facile and sample method for detection of pathogenic bacteria. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.