886 resultados para Graph-Based Metrics
Resumo:
TCP is a dominant protocol for consistent communication over the internet. It provides flow, congestion and error control mechanisms while using wired reliable networks. Its congestion control mechanism is not suitable for wireless links where data corruption and its lost rate are higher. The physical links are transparent from TCP that takes packet losses due to congestion only and initiates congestion handling mechanisms by reducing transmission speed. This results in wasting already limited available bandwidth on the wireless links. Therefore, there is no use to carry out research on increasing bandwidth of the wireless links until the available bandwidth is not optimally utilized. This paper proposed a hybrid scheme called TCP Detection and Recovery (TCP-DR) to distinguish congestion, corruption and mobility related losses and then instructs the data sending host to take appropriate action. Therefore, the link utilization is optimal while losses are either due to high bit error rate or mobility.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3).
Resumo:
This article presents the design and implementation of a trusted sensor node that provides Internet-grade security at low system cost. We describe trustedFleck, which uses a commodity Trusted Platform Module (TPM) chip to extend the capabilities of a standard wireless sensor node to provide security services such as message integrity, confidentiality, authenticity, and system integrity based on RSA public-key and XTEA-based symmetric-key cryptography. In addition trustedFleck provides secure storage of private keys and provides platform configuration registers (PCRs) to store system configurations and detect code tampering. We analyze system performance using metrics that are important for WSN applications such as computation time, memory size, energy consumption and cost. Our results show that trustedFleck significantly outperforms previous approaches (e.g., TinyECC) in terms of these metrics while providing stronger security levels. Finally, we describe a number of examples, built on trustedFleck, of symmetric key management, secure RPC, secure software update, and remote attestation.
Resumo:
In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform.
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator's joystick to facilitate collision free teleoperation. Optic flow is measured by wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. The coupling between optical flow (velocity) and force is modelled as an impedance - in this case an optical impedance. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. The paper focuses on applications to aerial robotics vehicles, however, the ideas apply directly to other force actuated vehicles such as submersibles or space vehicles, and the authors believe the approach has potential for control of terrestrial vehicles and even teleoperation of manipulators. Experimental results are provided for a simulated aerial robot in a virtual environment controlled by a haptic joystick.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
If mobile robots are to perform useful tasks in the real-world they will require a catalog of fundamental navigation competencies and a means to select between them. In this paper we describe our work on strongly vision-based competencies: road-following, person or vehicle following, pose and position stabilization. Results from experiments on an outdoor autonomous tractor, a car-like vehicle, are presented.
Resumo:
The article described an open-source toolbox for machine vision called Machine Vision Toolbox (MVT). MVT includes more than 60 functions including image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration, and color space conversion. MVT can be used for research into machine vision but is also versatile enough to be usable for real-time work and even control. MVT, combined with MATLAB and a model workstation computer, is a useful and convenient environment for the investigation of machine vision algorithms. The article illustrated the use of a subset of toolbox functions for some typical problems and described MVT operations including the simulation of a complete image-based visual servo system.
Resumo:
We present a novel vision-based technique for navigating an Unmanned Aerial Vehicle (UAV) through urban canyons. Our technique relies on both optic flow and stereo vision information. We show that the combination of stereo and optic-flow (stereo-flow) is more effective at navigating urban canyons than either technique alone. Optic flow from a pair of sideways-looking cameras is used to stay centered in a canyon and initiate turns at junctions, while stereo vision from a forward-facing stereo head is used to avoid obstacles to the front. The technique was tested in full on an autonomous tractor at CSIRO and in part on the USC autonomous helicopter. Experimental results are presented from these two robotic platforms operating in outdoor environments. We show that the autonomous tractor can navigate urban canyons using stereoflow, and that the autonomous helicopter can turn away from obstacles to the side using optic flow. In addition, preliminary results show that a single pair of forward-facing fisheye cameras can be used for both stereo and optic flow. The center portions of the fisheye images are used for stereo, while flow is measured in the periphery of the images.
Resumo:
Ensuring the long term viability of reef environments requires essential monitoring of many aspects of these ecosystems. However, the sheer size of these unstructured environments (for example Australia’s Great Barrier Reef pose a number of challenges for current monitoring platforms which are typically remote operated and required significant resources and infrastructure. Therefore, a primary objective of the CSIRO robotic reef monitoring project is to develop and deploy a large number of AUV teams to perform broadscale reef surveying. In order to achieve this, the platforms must be cheap, even possibly disposable. This paper presents the results of a preliminary investigation into the performance of a low-cost sensor suite and associated processing techniques for vision and inertial-based navigation within a highly unstructured reef environment.
Resumo:
Visual servoing has been a viable method of robot manipulator control for more than a decade. Initial developments involved positionbased visual servoing (PBVS), in which the control signal exists in Cartesian space. The younger method, image-based visual servoing (IBVS), has seen considerable development in recent years. PBVS and IBVS offer tradeoffs in performance, and neither can solve all tasks that may confront a robot. In response to these issues, several methods have been devised that partition the control scheme, allowing some motions to be performed in the manner of a PBVS system, while the remaining motions are performed using an IBVS approach. To date, there has been little research that explores the relative strengths and weaknesses of these methods. In this paper we present such an evaluation. We have chosen three recent visual servo approaches for evaluation in addition to the traditional PBVS and IBVS approaches. We posit a set of performance metrics that measure quantitatively the performance of a visual servo controller for a specific task. We then evaluate each of the candidate visual servo methods for four canonical tasks with simulations and with experiments in a robotic work cell.
Resumo:
This paper proposes a security architecture for the basic cross indexing systems emerging as foundational structures in current health information systems. In these systems unique identifiers are issued to healthcare providers and consumers. In most cases, such numbering schemes are national in scope and must therefore necessarily be used via an indexing system to identify records contained in pre-existing local, regional or national health information systems. Most large scale electronic health record systems envisage that such correlation between national healthcare identifiers and pre-existing identifiers will be performed by some centrally administered cross referencing, or index system. This paper is concerned with the security architecture for such indexing servers and the manner in which they interface with pre-existing health systems (including both workstations and servers). The paper proposes two required structures to achieve the goal of a national scale, and secure exchange of electronic health information, including: (a) the employment of high trust computer systems to perform an indexing function, and (b) the development and deployment of an appropriate high trust interface module, a Healthcare Interface Processor (HIP), to be integrated into the connected workstations or servers of healthcare service providers. This proposed architecture is specifically oriented toward requirements identified in the Connectivity Architecture for Australia’s e-health scheme as outlined by NEHTA and the national e-health strategy released by the Australian Health Ministers.
Resumo:
Aim: Worldwide, injury is the leading cause of death and disability for young people. Injuries among young people are commonly associated with risk taking behaviour, including violence and transport risks, which often occur in the context of alcohol use. The school environment has been identified as having a significant role in shaping adolescent behaviour. In particular, school connectedness, the degree to which adolescents feel that they belong and are accepted at school, has been shown to be an important protective factor. Strategies for increasing school connectedness may therefore be effective in reducing risk taking and associated injury. Prior to developing connectedness strategies, it is important to understand the perspectives of those in the school regarding the construct and how it is realised in the school context. The aim of this research was to understand teachers’ perspectives of school connectedness, the strategies they employ to connect with students, and their perceptions of school connectedness as a strategy for risk taking and injury prevention. Method: In depth interviews of approximately 45 minutes duration were conducted with 13 Health and PE teachers and support staff from 2 high schools in Southeast Queensland, Australia. Additionally, 6 focus group workshop discussions were held with 35 Education department employees (5-6 per group), including teachers from 15 Southeast Queensland high schools. Results: Participants were found to place strong importance on the development of connectedness among students, including those at risk for problem behaviour. Strategies used to promote connectedness included building trust, taking an interest in each student and being available to talk to, and finding something positive for students to succeed at. Teachers identified strategies as being related to decreased risk taking behavior. Teacher training on school connectedness was perceived as an important and useful inclusion in a school based injury prevention program. Conclusions: The established link between increased school connectedness and decreased problem behaviour has implications for school based strategies designed to decrease adolescent risk taking behaviour and associated injury. Targeting school connectedness as a point of intervention, in conjunction with individual attitude and behaviour change programs, may be an effective injury prevention strategy.