999 resultados para Geophysics and Seismology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mt. Amiata volcano (Tuscany, central Italy) hosts the second largest geothermal field of Italy. Its SW and NE sectors are characterized by the presence of several CO2-rich (mayor que95% by vol.) gas discharges. An intense Hg mining activity had taken place from the 19th century up to the end of the ?70s, particularly close to Abbadia San Salvatore, during which two drillings (Acqua Passante and Ermeta) intercepted a CO2-rich gas fertile horizon. The related gases are emitted in the atmosphere since 1938 and 1959, respectively, causing severe concerns for the local air quality. In this work the results of a geochemical and isotopic survey carried out on these gas emissions from March 2009 to January 2014 are presented. CO2 fluxes from both the two wells and soil from an area of about 653,500 m2 located between them were measured. The two wells are emitting up to 15,000, 92 and 8 tons y-1 of CO2, CH4 and H2S, respectively, while the computed soil CO2 output was estimated at 4,311 ton y-1. The spatial distribution of the CO2 soil flux suggests the presence of preferential patterns, indicating sites of higher permeability. Since the local municipality is evaluating the possibility to plug the Ermeta vent, a temporarily closure should first be carried out to test the possible influence of this operation on the diffuse soil degassing of deep-originated CO2 in the surrounding area. This implies that diffuse soil gases should carefully be monitored before proceeding with its definitive closure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the many types of natural and manmade cavities in different parts of the world is important to the fields of geology, geophysics, engineering, architectures, agriculture, heritages and landscape. Ground-penetrating radar (GPR) is a noninvasive geodetection and geolocation technique suitable for accurately determining buried structures. This technique requires knowing the propagation velocity of electromagnetic waves (EM velocity) in the medium. We propose a method for calibrating the EM velocity using the integration of laser imaging detection and ranging (LIDAR) and GPR techniques using the Global Navigation Satellite System (GNSS) as support for geolocation. Once the EM velocity is known and the GPR profiles have been properly processed and migrated, they will also show the hidden cavities and the old hidden structures from the cellar. In this article, we present a complete study of the joint use of the GPR, LIDAR and GNSS techniques in the characterization of cavities. We apply this methodology to study underground cavities in a group of wine cellars located in Atauta (Soria, Spain). The results serve to identify construction elements that form the cavity and group of cavities or cellars. The described methodology could be applied to other shallow underground structures with surface connection, where LIDAR and GPR profiles could be joined, as, for example, in archaeological cavities, sewerage systems, drainpipes, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements. This work is dedicated to the memory of Andrés Pérez-Estaún, brilliant scientist, colleague, and friend. The authors sincerely thank Ian Ferguson and an anonymous reviewer for their useful comments on the manuscript. Xènia Ogaya is currently supported in the Dublin Institute for Advanced Studies by a Science Foundation Ireland grant IRECCSEM (SFI grant 12/IP/1313). Juan Alcalde is funded by NERC grant NE/M007251/1, on interpretational uncertainty. Juanjo Ledo, Pilar Queralt and Alex Marcuello thank Ministerio de Economía y Competitividad and EU Feder Funds through grant CGL2014- 54118-C2-1-R. Funding for this Project has been partially provided by the Spanish Ministry of Industry, Tourism and Trade, through the CIUDEN-CSIC-Inst. Jaume Almera agreement (ALM-09-027: Characterization, Development and Validation of Seismic Techniques applied to CO2 Geological Storage Sites), the CIUDEN-Fundació Bosch i Gimpera agreement (ALM-09-009 Development and Adaptation of Electromagnetic techniques: Characterisation of Storage Sites) and the project PIERCO2 (Progress In Electromagnetic Research for CO2 geological reservoirs CGL2009-07604). The CIUDEN project is co-financed by the European Union through the Technological Development Plant of Compostilla OXYCFB300 Project (European Energy Programme for Recovery).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/ Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tide gauge (TG) data along the northern Mediterranean and Black Sea coasts are compared to the sea-surface height (SSH) anomaly obtained from ocean altimetry (TOPEX/Poseidon and ERS-1/2) for a period of nine years (1993–2001). The TG measures the SSH relative to the ground whereas the altimetry does so with respect to the geocentric reference frame; therefore their difference would be in principle a vertical ground motion of the TG sites, though there are different error sources for this estimate as is discussed in the paper. In this study we estimate such vertical ground motion, for each TG site, from the slope of the SSH time series of the (non-seasonal) difference between the TG record and the altimetry measurement at a point closest to the TG. Where possible, these estimates are further compared with those derived from nearby continuous Global Positioning System (GPS) data series. These results on vertical ground motion along the Mediterranean and Black Sea coasts provide useful source data for studying, contrasting, and constraining tectonic models of the region. For example, in the eastern coast of the Adriatic Sea and in the western coast of Greece, a general subsidence is observed which may be related to the Adriatic lithosphere subducting beneath the Eurasian plate along the Dinarides fault.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Array measurements have become a valuable tool for site response characterization in a non-invasive way. The array design, i.e. size, geometry and number of stations, has a great influence in the quality of the obtained results. From the previous parameters, the number of available stations uses to be the main limitation for the field experiments, because of the economical and logistical constraints that it involves. Sometimes, from the initially planned array layout, carefully designed before the fieldwork campaign, one or more stations do not work properly, modifying the prearranged geometry. Whereas other times, there is not possible to set up the desired array layout, because of the lack of stations. Therefore, for a planned array layout, the number of operative stations and their arrangement in the array become a crucial point in the acquisition stage and subsequently in the dispersion curve estimation. In this paper we carry out an experimental work to analyze which is the minimum number of stations that would provide reliable dispersion curves for three prearranged array configurations (triangular, circular with central station and polygonal geometries). For the optimization study, we analyze together the theoretical array responses and the experimental dispersion curves obtained through the f-k method. In the case of the f-k method, we compare the dispersion curves obtained for the original or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion curves obtained when a certain number of stations n is removed, each time, from the original layout of X geophones. The comparison is evaluated by means of a misfit function, which helps us to determine how constrained are the studied geometries by stations removing and which station or combination of stations affect more to the array capability when they are not available. All this information might be crucial to improve future array designs, determining when it is possible to optimize the number of arranged stations without losing the reliability of the obtained results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present-day condition of bipolar glaciation characterized by rapid and large climate fluctuations began at the end of the Pliocene with the intensification of the Northern Hemisphere continental glaciations. The global cooling steps of the late Pliocene have been documented in numerous studies of Ocean Drilling Program (ODP) sites from the Northern Hemisphere. However, the interactions between oceans and between land and ocean during these cooling steps are poorly known. In particular, data from the Southern Hemisphere are lacking. Therefore I investigated the pollen of ODP Site 1082 in the southeast Atlantic Ocean in order to obtain a high-resolution record of vegetation change in Namibia between 3.4 and 1.8 Ma. Four phases of vegetation development are inferred that are connected to global climate change. (1) Before 3 Ma, extensive, rather open grass-rich savannahs with mopane trees existed in Namibia, but the extension of desert and semidesert vegetation was still restricted. (2) Increase of winter rainfall dependent Renosterveld-like vegetation occurred between 3.1 and 2.2 Ma connected to strong advection of polar waters along the Namibian coast and a northward shift of the Polar Front Zone in the Southern Ocean. (3) Climatically induced fluctuations became stronger between 2.7 and 2.2 Ma and semiarid areas extended during glacial periods probably as the result of an increased pole-equator thermal gradient and consequently globally enhanced atmospheric circulation. (4) Aridification and climatic variability further increased after 2.2 Ma, when the Polar Front Zone migrated southward and the influence of Atlantic moisture brought by the westerlies to southern Africa declined. It is concluded that the positions of the frontal systems in the Southern Ocean which determine the locations of the high-pressure cells over the South Atlantic and the southern Indian Ocean have a strong influence on the climate of southern Africa in contrast to the climate of northwest and central Africa, which is dominated by the Saharan low-pressure cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Logatchev hydrothermal vent field (14°45'N, Mid-Atlantic Ridge) is located in a ridge segment characterized by mantle-derived ultramafic outcrops. Compared to basalt-hosted vents, Logatchev high temperature fluids are relatively low in sulfide indicating that the diffuse, low temperature fluids of this vent field may not contain sufficient sulfide concentrations to support a chemosymbiotic invertebrate community. However, the high abundances of bathymodiolin mussels with bacterial symbionts related to free-living sulfur oxidizing bacteria suggested that bioavailable sulfide is present at Logatchev. To clarify if diffuse fluids above mussel beds of Bathymodiolus puteoserpentis provide the reductants and oxidants needed by their symbionts for aerobic sulfide oxidation, in situ microsensor measurements of dissolved hydrogen sulfide and oxygen were combined with simultaneous temperature measurements. High temporal fluctuations of all three parameters were measured above the mussel beds. H2S and O2 co-existed with mean concentrations between 9-31 µM (H2S) and 216-228 µM (O2). Temperature maxima (<= 7.4°C) were generally concurrent with H2S maxima (<= 156 µM) and O2 minima (>= 142 µM). Long-term measurements for 250 days using temperature as a proxy for oxygen and sulfide concentrations indicated that the mussels were neither oxygen- nor sulfide-limited. Our in situ measurements at Logatchev indicate that sulfide may also be bioavailable in diffuse fluids from other ultramafic-hosted vents along slow- and ultraslow-spreading ridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program (IODP) Expedition 310 recovered drill cores from the drowned reefs around the island of Tahiti (17°40'S, 149°30'W), many of which contained samples of massive corals from the genus Porites. Herein we report on one well-preserved fossil coral sample: a 13.6 cm long Porites sp. dated by uranium series techniques at 9523 ± 33 years. Monthly delta18O and Sr/Ca determinations reveal nine clear and robust annual cycles. Coral delta18O and Sr/Ca determinations estimate a mean temperature of ca. 24.3°C (ca. 3.2°C colder than modern) for Tahiti at 9.5 ka; however, this estimate is viewed with caution since potential sources of cold bias in coral geochemistry remain to be resolved. The interannual variability in coral delta18O is similar between the 9.5 ka coral record and a modern record from nearby Moorea. The seasonal cycle in coral Sr/Ca is approximately the same or greater in the 9.5 ka coral record than in modern coral records from Tahiti. Paired analysis of coral delta18O and Sr/Ca indicates cold/wet (warm/dry) interannual anomalies, opposite from those observed in the modern instrumental record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.