986 resultados para Geology, Stratigraphic -- Eocene
Resumo:
The benthic foraminifer fauna at Sumisu Rift Sites 790 and 791 indicates that a deep open-ocean (>2300 m) or a basin with open-ocean access existed between 1.1 and 0.7 Ma at the time of the initiation of rifting. The appearance of a low- to medium-oxygen fauna (1600-2300 m) between 0.7 and 0.5 Ma suggests that the open-ocean access may have been terminated at this time because of the development of volcanoes and rift flank uplifts around the basin. The occurrence of low-oxygen faunas at 0.03 Ma suggests a secondary closing of the basin. The lower bathyal benthic faunas from lower Pliocene sediments of rift margin Site 788 suggest about 0.6-1.6 km of total basement uplift. This uplift may have led to the formation of the major hiatus between 2.3 and <0.3 Ma. The faunal changes of benthic foraminifers at Sites 792 and 793 in the forearc basin document a shallowing water depth from below the carbonate compensation depth (CCD) (about 3.5 km) in the late early Oligocene to the present depths of 1800 and 2975 m, respectively. These data suggest about 1 km of total basement uplift in the inner part of the forearc basin (Site 792) and about 0.6 km total basement subsidence in the central part of the forearc basin (Site 793) since about 31 Ma. The former uplift led to a thinner sediment accumulation (800 m) and the latter subsidence to a thicker sediment accumulation (1400 m) at these sites. Faunal changes of benthic foraminifers observed in Sites 782 and 786 sequences drilled at the outer-arc high document a deepening water depth from 1.3 to 2.1 km in late Eocene to the present depth of about 3 km. These data suggest about 1.1-1.9 and 1.3-2.1 km of total basement subsidence at Sites 786 and 782, respectively. These results indicate total basement uplift in the inner part of the Bonin arc-trench system since late Oligocene and total basement subsidence in the outer part of the system since late Eocene. The last occurrence (LO) of Stilostomella spp. and Pleurostomella spp. and the first occurrence (F0) of Bulimina aculeata d'Orbigny occurred consistently at 0.7 Ma at all three arc proximal sites (790,791, and 792). This fact is taken to suggest a change of water mass, from one originating from the central part of the ocean to that originating from ocean-margin areas at that time.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.
Resumo:
Different source areas, oceanography and climate regimes influenced the clay mineral assemblages and grain size distribution of two sediment cores from the North and South Aegean Sea during the last glacial and the Holocene. In the North Aegean Sea, clay mineral composition is mainly controlled by sea level evolution, melting of southeastern European glaciers, and establishment of the connection between the Black Sea and Aegean Sea. The long-term development of clay mineral assemblages in the South Aegean Sea reflects changes in the Nile discharge and African dust input. At this site, the establishment of pluvial conditions in the Nile catchment during the early to middle Holocene resulted in a substantial rise in smectite/illite ratios. In the late Holocene, stepwise aridification of the southern borderlands caused an increase in windblown sediment material and a decrease in Nile suspended material. The clay mineral records exhibit periodic millennial-scale fluctuations. In the North Aegean Sea, the changes are centred at a period of 1.3-1.8 ka and can be attributed to short-term climate and weathering changes in the northern borderlands. The changes in the South Aegean Sea are centred at periods of 3.2-4.3, 1.9-2.4 and 1.3-1.7 ka reflecting short-term changes in wind strength and Northeast African hydrology.
Resumo:
Magnetostratigraphic studies of Paleogene sediments piston-cored on Maud Rise, Weddell Sea (ODP Sites 689 and 690), are a cornerstone of Southern Ocean Paleogene and Neogene chronostratigraphy. However, parts of previous magnetostratigraphic interpretations have been called into question, and recent reinvestigation of the upper Paleocene-middle Eocene portion of Site 690 suggested that the records might be contaminated by spurious magnetizations, which raises doubts about the reliability of these important records. We undertook a high-resolution magnetostratigraphic study of Eocene-Oligocene u-channel samples from ODP Holes 689B, 689D, 690B, and 690C in order to address these concerns. A pervasive overprint appears to be present below the middle Eocene, which compromises magnetobiostratigraphic interpretations for the upper Cretaceous and lower Paleogene. Nevertheless, our new results provide a robust record of geomagnetic field behavior from 38.5 to 25 Ma and confirm the reliability of these sediments for calibration of biostratigraphic datum events during a crucial phase of earth history when major Antarctic ice sheets developed. Also, comparison of magnetozone thicknesses in multiple holes at the same site indicates that ~1.2-1.8 m of the stratigraphic record is missing at each core break, which corresponds to time breaks of 120-360 k.y. Lack of a continuous record within a single hole renders useless spectral analyses for investigating long geomagnetic and paleoclimatic time series. This observation reinforces the need for coring of multiple offset holes to obtain continuous paleoceanographic records. Sedimentary hiatuses have been identified only at the deeper of the two investigated sites (Site 690), which could mark a local response to the onset of the Antarctic Circumpolar Current.
Resumo:
Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.
Resumo:
In the late Paleocene to early Eocene, deep sea benthic foraminifera suffered their only global extinction of the last 75 million years and diversity decreased worldwide by 30-50% in a few thousand years. At Maud Rise (Weddell Sea, Antarctica; Sites 689 and 690, palaeodepths 1100 m and 1900 m) and Walvis Ridge (Southeastern Atlantic, Sites 525 and 527, palaeodepths 1600 m and 3400 m) post-extinction faunas were low-diversity and high-dominance, but the dominant species differed by geographical location. At Maud Rise, post-extinction faunas were dominated by small, biserial and triserial species, while the large, thick-walled, long-lived deep sea species Nuttallides truempyi was absent. At Walvis Ridge, by contrast, they were dominated by long-lived species such as N. truempyi, with common to abundant small abyssaminid species. The faunal dominance patterns at the two locations thus suggest different post-extinction seafloor environments: increased flux of organic matter and possibly decreased oxygen levels at Maud Rise, decreased flux at Walvis Ridge. The species-richness remained very low for about 50 000 years, then gradually increased. The extinction was synchronous with a large, negative, short-term excursion of carbon and oxygen isotopes in planktonic and benthic foraminifera and bulk carbonate. The isotope excursions reached peak negative values in a few thousand years and values returned to pre-excursion levels in about 50 000 years. The carbon isotope excursion was about -2 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, and about -4 per mil for planktonic foraminifera at Maud Rise. At the latter sites vertical gradients thus decreased, possibly at least partially as a result of upwelling. The oxygen isotope excursion was about -1.5 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, -1 per mil for planktonic foraminifera at Maud Rise. The rapid oxygen isotope excursion at a time when polar ice-sheets were absent or insignificant can be explained by an increase in temperature by 4-6°C of high latitude surface waters and deep waters world wide. The deep ocean temperature increase could have been caused by warming of surface waters at high latitudes and continued formation of the deep waters at these locations, or by a switch from dominant formation of deep waters at high latitudes to formation at lower latitudes. Benthic foraminiferal post-extinction biogeographical patterns favour the latter explanation. The short-term carbon isotope excursion occurred in deep and surface waters, and in soil concretions and mammal teeth in the continental record. It is associated with increased CaC03-dissolution over a wide depth range in the oceans, suggesting that a rapid transfer of isotopically light carbon from lithosphere or biosphere into the ocean-atmosphere system may have been involved. The rapidity of the initiation of the excursion (a few thousand years) and its short duration (50 000 years) suggest that such a transfer was probably not caused by changes in the ratio of organic carbon to carbonate deposition or erosion. Transfer of carbon from the terrestrial biosphere was probably not the cause, because it would require a much larger biosphere destruction than at the end of the Cretaceous, in conflict with the fossil record. It is difficult to explain the large shift by rapid emission into the atmosphere of volcanogenic CO2, although huge subaerial plateau basalt eruptions occurred at the time in the northern Atlantic. Probably a complex combination of processes and feedback was involved, including volcanogenic emission of CO2, changing circulation patterns, changing productivity in the oceans and possibly on land, and changes in the relative size of the oceanic and atmospheric carbon reservoirs.
Resumo:
At Deep Sea Drilling Site 384 (J-Anomaly Ridge, Grand Banks Continental Rise, NW Atlantic Ocean) Paleocene nannofossil chalks and oozes (~70 m thick) are unconformably/disconformably underlain (~168 m; upper Maastrichtian) and overlain (~98.7 m; upper lower Eocene) by sediments of comparable lithologies. The chalks are more indurated in stratigraphically higher levels of the Paleocene reflecting increasing amounts of biosiliceous (radiolarians and diatoms) components. This site serves as an excellent location for an integrated calcareous and siliceous microfossil zonal stratigraphy and stable isotope stratigraphy. We report the results of a magnetostratigraphic study which, when incorporated with published magnetostratigraphic results, reveals an essentially complete magnetostratigraphic record spanning the interval from Magnetochron C31n (late Maastrichtian) to C25n (partim) (late Paleocene, Thanetian). Integrated magnetobiochronology and stable isotope stratigraphy support the interpretation of, and constrain the estimated duration of, a short hiatus (~0.9 my) within the younger part of Chron C29r (including the K/P boundary) and an ~6 my hiatus separating upper Paleocene (Magnetozone C25n) and upper lower Eocene (Magnetozone C22r) sediments. Some 30 planktonic foraminiferal datum levels [including the criteria used to denote the Paleocene planktonic foraminiferal (sub)tropical zonal scheme of Berggren and Miller, Micropaleontology 34 (4) (1988) 362-380 and Berggren et al., SEPM Spec. Publ. 54 (1995) 129-212, Geol. Soc. Am. Bull. 107 (11) (1995) 1272-1287], and nearly two dozen calcareous nannoplankton datum levels have been recognized and calibrated to the magnetochronology. Planktonic foraminiferal Subzones P4a and P4b of (upper Paleocene) Zone P4 are emended/redefined based on the discovery of a longer stratigraphic extension of Acarinina subsphaerica (into at last Magnetozone C25n). Stable isotope stratigraphies from benthic foraminifera and fine fraction (<38 µm) carbonate have been calibrated to the biochronology and magnetostratigraphy. A minimum in benthic foraminifer delta13C was reached near the Danian/Selandian boundary (within Chron C26r, planktonic foraminiferal Zone P3a and calcareous nannoplankton Zone NP4) and is followed by the rise to maximum delta13C values in the late Thanetian (near the base of C25n, in Zone P4c and NP9a, respectively) that can be used for global correlation in the Paleocene.
Resumo:
CaCO3, Corg, and biogenic SiO2 were measured in Eocene equatorial Pacific sediments from Sites 1218 and 1219, and bulk oxygen and carbon isotopes were measured on selected intervals from Site 1219. These data delineate a series of CaCO3 events that first appeared at ~48 Ma and continued to the Eocene/Oligocene boundary. Each event lasted 1-2 m.y. and is separated from the next by a low CaCO3 interval of a similar time span. The largest of these carbonate accumulation events (CAE-3) is in Magnetochron 18. It began at ~42.2 Ma, lasted until ~40.3 Ma, and was marked by higher than average productivity. The end of CAE-3 was abrupt and was associated with a large-scale carbon transfer to the oceans prior to warming of high-latitude regions. Changes in carbonate compensation depth associated with CAE excursions were small in the early part of the middle Eocene but increased to as much as 800 m by the late middle Eocene before decreasing into the late Eocene. Oxygen isotope data indicate that the carbonate events are associated with cooling conditions and may mark small glaciations in the Eocene.
Resumo:
The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.
Resumo:
Constraining the magnitude of high-latitude temperature change across the Eocene-Oligocene transition (EOT) is essential for quantifying the magnitude of Antarctic ice-sheet expansion and understanding regional climate response to this event. To this end, we constructed high-resolution stable oxygen isotope (d18O) and magnesium/calcium (Mg/Ca) records from planktic and benthic foraminifera at four Ocean Drilling Program (ODP) sites in the Southern Ocean. Planktic foraminiferal Mg/Ca records from the Kerguelen Plateau (ODP Sites 738, 744, and 748) show a consistent pattern of temperature change, indicating 2-3 °C cooling in direct conjunction with the first step of a two-step increase in benthic and planktic foraminiferal d18O values across the EOT. In contrast, benthic Mg/Ca records from Maud Rise (ODP Site 689) and the Kerguelen Plateau (ODP Site 748) do not exhibit significant temperature change. The contrasting temperature histories derived from the planktic and benthic Mg/Ca records are not reconcilable, since vertical d18O gradients remained nearly constant at all sites between 35.0 and 32.5 Ma. Based on the coherency of the planktic Mg/Ca records from the Kerguelen Plateau sites and complications with benthic Mg/Ca paleothermometry at low temperatures, the planktic Mg/Ca records are deemed the most reliable measure of Southern Ocean temperature change. We therefore interpret a uniform cooling of 2-3 °C in both deep surface (thermocline) waters and intermediate deep waters of the Southern Ocean across the EOT. Cooling of Southern Ocean surface waters across the EOT was likely propagated to the deep ocean, since deep waters were primarily sourced on the Antarctic margin throughout this time interval. Removal of the temperature component from the observed foraminiferal d18O shift indicates that seawater d18O values increased by 0.6 ± 0.15 per mil across the EOT interval, corresponding to an increase in global ice volume to a level equivalent with 60-130% modern East Antarctic ice sheet volume.
Resumo:
In contrast to the adjacent parts of the Transantarctic Mountains, the Mesozoic macrofossil record of north Victoria Land remains poorly documented. During the Ninth German Antarctic North Victoria Land Expedition (GANOVEX IX 2005/2006) twelve fossil sites in southern north Victoria Land were discovered and sampled. Fossils from the Triassic to Early Jurassic Section Peak Formation were collected from Archambault Ridge, Anderton Glacier, Skinner Ridge, Timber Peak, Vulcan Hills, Runaway Hills, Section Peak and Shafer Peak. These localities have yielded abundant fossil wood and compressions of horsetails, ferns, and seed ferns. In addition, several beetle elytra were found at Timber Peak. Fossil localities of the overlying Shafer Peak Formation and Exposure Hill-type deposits occur at Shafer Peak and in the Mount Carson area, and have yielded various trace fossils, permineralized wood, leaf compressions, and conchostracans. Two newly discovered fossil sites are associated with the late Early Jurassic Kirkpatrick lava flows. Upright-standing tree trunks have been recorded at Suture Bench, and highly fossiliferous sedimentary interbeds occur at the southwestern end of the Mesa Range. Of special interest is the exquisite fossil preservation at some of the sites. Compression fossils from Timber Peak and Shafer Peak contain well-preserved cuticles, which is very rare in the Antarctic. An Early Jurassic permineralized deposit at Mount Carson contains structurally preserved ferns. Furthermore, the arthropod fossils from sedimentary interbeds at the Mesa Range are preserved in minute detail, including antennae and limb spines of a blattid insect.
Resumo:
Eocene-Oligocene metalliferous sediments and associated lithologies from the central equatorial Pacific are described in detail. Geochemical analyses of 54 sediment and 2 basalt samples are presented for 34 elements. Detailed stratigraphic and statistical analyses of these data, combined with mineralogic studies, indicate the presence of volcanic glass and seven main mineral phases: biogenic calcite and opal, Fe smectite, goethite, dMnO2, carbonate fluorapatite, and barite. Fe smectite formed by reactions between Fe oxyhydroxides and biogenic opal, causing the dissolution of calcite and the precipitation of barite. Diagenesis was oxic. Sediments have rare earth element distributions similar to those in seawater. The metal content of the sediments is related to competition between the supply rates of hydrothermal and biogenic particles, but has been enhanced by early diagenetic processes. Eocene-Oligocene metalliferous sediments compare closely to those currently being deposited in the Bauer Basin and on the flanks of the East Pacific Rise. There is, however, no evidence that they were deposited in close proximity to an active hydrothermal system.