973 resultados para Geologie.
Resumo:
Each vol. has special t.-p.
Resumo:
List of members in v. 1, 4, 6, 11, 16, 25.
Resumo:
Chemical abstracts
Resumo:
Variability in the test of Globorotalia menardii during the past 8 million years has been investigated at DSDP Site 502A (Caribbean Sea) and DSDP Site 503A (Eastern Equatorial Pacific). Measurements were made of spire height (delta x), maximum diameter (delta y), the tangent angles of the upper and lower peripheral keels (phi 1, phi 2, respectively), the number of chambers in the final whorl, and the area of the silhouette in keel view. Four morphotypes alpha, beta, gamma, and delta were distinguished. Morphotype alpha was found in strata ranging in age from the Late Miocene through the Holocene. It shows a continuous increase in delta x and delta y until the Late Pleistocene. During and after the final closure of the ancient Central American Seaway (between 2.4 Ma and 1.8 Ma) there was a rapid increase in the area of the test in keel view. At the Caribbean Sea site, morphotype beta evolved during the past 0.22 Ma. It is less inflated than alpha and has a more delicate test. In the morphospace of delta x vs. delta y, morphotypes alpha and beta can be distinguished by a separation line delta y = 3.2 * delta x - 160 (delta x and delta y in µm). Plots of morphotype alpha are below that line, those of beta are above it. Morphotype alpha is taken to be Globorotalia menardii menardii Parker, Jones & Brady (1865) and includes G. menardii 'A' Bolli (1970). Morphotype beta is identified as G. menardii cultrata (d'Orbigny). Morphotypes gamma and delta are extinct Upper Miocene to Pliocene forms which evolved from morphotype alpha. They have a narrower phi 1 angle and more chambers (>=7) than morphotype alpha commonly with 5 to 6 chambers (7 in transitional forms). In contemporaneous samples morphotype delta can be distinguished from gamma by a smaller value of phi 1 and 8 or more chambers in the final whorl. Morphotype gamma is taken to be G. limbata (Fornasini, 1902) and includes the junior synonym G. menardii 'B' Bolli (1970). Morphotype delta is G. multicamerata Cushman & Jarvis (1930). With the exception of the Late Pleistocene development of G. menardii cultrataonly in the Caribbean the morphological changes of G. menardii at DSDP Sites 502A and 503A are similar. The development from the ancestral G. menardii menardii of the G. limbata - G. multicamerata lineage during the Pliocene and of G. menardii cultrata during the Late Pleistocene suggests responses at the two sites to a changing palaeoceanography during and after the formation of the Isthmus of Panama.
Resumo:
The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.
Resumo:
Following the launch of the "Marion Dufresne 1", first supply ship of the Terres Australes and Antarctiques Françaises and part time oceanographic vessel in the Indian Ocean, a new marine geology program was developped at the Laboratoire de Géologie, MNHN. The first oceanographic cruise of the "Marion Dufresne 1" started in 1973 in the Southwestern Indian Ocean (OSIRIS I cruise). Forty piston-cores recovered nearly 200 m of sediments consisting in the first of the 450 cores of the Indian Ocean collection now deposited at the Museum. L. Leclaire being Director from 1980 to 1991, a multidisciplinary team (including sedimentologists and micropaleontologists) was involved in many oceanographic cruises in the Indian Ocean. Marine sedimentology was developped during annual cruises programs in collaboration with geophysicists, geochemists, and biologists. In 1995, the "Marion Dufresne 2" replaced the initial "Marion Dufresne 1".
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.
Resumo:
The sediments of 14 box cores and 7 gravity cores, mainly taken directly in front of the Filchner(-Ronne) ice shelf northwest of Berkner Island (Weddell Sea), allowed to distinguish six sediment types. On the one hand,the retreat of the at first grounded and then floated ice from the last glacial maximum is documented. On the other hand,the sediments give an insight into extensive Holocene sediment deposition and remobilization northwest of Berkner Island. The ortho till was deposited directly by the grounded ice sheet and is lacking any marine influence. After floating of the ice shelf, partly very weIl stratified, partly unstratified, non-bioturbated paratill is deposited beneath the ice shelf. Lack of IRD-content in the paratill immediately above the orthotill indicates freezing at the bottom of the ice, at least for a short period after the ice became afloat. The orthotill and paratill contain small amounts of fragmented Tertiary diatoms, which allow the conclusion, that glacial-marine sediments in the accumulation area of the Ronne ice shelf will be eroded and later deposited by ice in the investigation area. Starting of bioturbation and therefore change in sedimentation from paratill to bioturbated paratill,is caused by the retreat of the ice shelf to its actual position. Isostatic uplift of the sea-bed after the Ice Age causes minor water depths with higher current velocities. The fine-fraction is eroding and mean particle-size will increase. Maybe, also isostatic uplift is responsible for repeated great advances of the floated ice shelf as shown in an erosional horizon in some cores containing bioturbated paratill. Postglacial sediment-thicknesses exceed 3 m. Assuming floating of the ice 15.000 YBP, accumulation rates reach nearly 20cm/lOOO years. Following the theories about sediment input in front of wide ice shelves, this was not expected. In the shallower water depths of Berkner Bank, the oscillations of the ice shelf are recorded in the sediments. Sorting and redistribution by high current velocities from beneath the ice up to the calving line, lead to the deposition of the weIl to very weIl sorted sandy till. In front of the calving line the finer fraction will settle down. Remobilization is possible by bioturbation and increasing current-velocity. According to the intensity of mixing of the sandy till with the fine fraction, modified till or muddy till results.