897 resultados para Genes, Mating Type, Fungal
Resumo:
Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.
Resumo:
The striking color patterns of butterflies and birds have long interested biologists. But how these animals see color is less well understood. Opsins are the protein components of the visual pigments of the eye. Color vision has evolved in butterflies through opsin gene duplications, through positive selection at individual opsin loci, and by the use of filtering pigments. By contrast, birds have retained the same opsin complement present in early-jawed vertebrates, and their visual system has diversified primarily through tuning of the short-wavelength-sensitive photoreceptors, rather than by opsin duplication or the use of filtering elements. Butterflies and birds have evolved photoreceptors that might use some of the same amino acid sites for generating similar spectral phenotypes across approximately 540 million years of evolution, when rhabdomeric and ciliary-type opsins radiated during the early Cambrian period. Considering the similarities between the two taxa, it is surprising that the eyes of birds are not more diverse. Additional taxonomic sampling of birds may help clarify this mystery.
Resumo:
Context: Postprandial dysmetabolism is emerging as an important cardiovascular risk factor. Augmentation index (AIx) is a measure of systemic arterial stiffness and independently predicts cardiovascular outcome. Objective: The objective of this study was to assess the effect of a standardized high-fat meal on metabolic parameters and AIx in 1) lean, 2) obese nondiabetic, and 3) subjects with type 2 diabetes mellitus (T2DM). Design and Setting: Male subjects (lean, n = 8; obese, n = 10; and T2DM, n = 10) were studied for 6 h after a high-fat meal and water control. Glucose, insulin, triglycerides, and AIx (radial applanation tonometry) were measured serially to determine the incremental area under the curve (iAUC). Results: AIx decreased in all three groups after a high-fat meal. A greater overall postprandial reduction in AIx was seen in lean and T2DM compared with obese subjects (iAUC, 2251 +/- 1204, 2764 +/- 1102, and 1187 +/- 429% . min, respectively; P < 0.05). The time to return to baseline AIx was significantly delayed in subjects with T2DM (297 +/- 68 min) compared with lean subjects (161 +/- 88 min; P < 0.05). There was a significant correlation between iAUC AIx and iAUC triglycerides (r = 0.50; P < 0.05). Conclusions: Obesity is associated with an attenuated overall postprandial decrease in AIx. Subjects with T2DM have a preserved, but significantly prolonged, reduction in AIx after a high-fat meal. The correlation between AIx and triglycerides suggests that postprandial dysmetabolism may impact on vascular dynamics. The markedly different response observed in the obese subjects compared with those with T2DM was unexpected and warrants additional evaluation.
Resumo:
Diet and medical treatment are the standard treatment for type 2 diabetes. In obese subjects with type 2 diabetes, bariatric surgery is effective in resolving diabetes. Two clinical trials comparing bariatric surgery to medical treatment were evaluated. Both the Surgical Treatment And Medications Potentially Eradicate Diabetes Efficiently (STAMPEDE) trial (laparoscopic Roux-En Y gastric bypass and sleeve gastrectomy) and the DIet and medical therapy versus BAriatric SurgerY in type 2 diabetes (DIBASY) trial (laparoscopic gastric bypass and biliopancreatic-diversion) showed that surgery was more effective than medical care in resolving or managing type 2 diabetes. Larger studies, or a compilation of studies, are needed to determine whether one of these procedures is better, or if they are all similarly effective, and this should also be weighed against the risk of the operations.
Resumo:
Study Rationale The objective of the study was to explore if and how rural culture influences type II diabetes management and to better understand the social processes that rural people construct in coping with diabetes and its complications. In particular, the study aimed to analyse the interface and interactions between rural people with type II diabetes and the Australian health care system. Theoretical framework and methods The research applied constructivist grounded theory methods within an interpretive interactionist framework. Data from 39 semi-structured interviews with rural and urban people with type II diabetes plus a mix of rural health care providers were analysed to develop a theoretical understanding of the social processes that define diabetes management in that context. Results The analysis suggests that although type II diabetes imposes limitations that require adjustment and adaptation these processes are actively negotiated by rural people within the environmental context to fit the salient social understandings of autonomy and self-reliance. Thus people normalised self-reliant diabetes management behaviours because this was congruent with the rural culture. Factors that informed the actions of normalisation were the relationships between participants and health care professions, support and access to individual resources. Conclusions The findings point to ways in which rural self-reliance is conceived as the primary strategy of diabetic management. People face the paradox of engaging with a health care system that at the same time maximises individual responsibility for health and minimises the social support by which individuals manage the condition. The emphasis on self-reliance gives some legitimacy to a lack of prevention and chronic care services. Success of diabetic management behaviours is contingent on relative resources. Where there is good primary care there develop a number of downstream effects including a sense of empowerment to manage difficult rural environmental circumstances. This has particular bearing on health outcomes for people with fewer resources.
Resumo:
OBJECTIVES: To measure the thickness at which primary schoolchildren apply sunscreen on school day mornings and to compare it with the thickness (2.00 mg/cm(2)) at which sunscreen is tested during product development, as well as to investigate how application thickness was influenced by age of the child (school grades 1-7) and by dispenser type (500-mL pump, 125-mL squeeze bottle, or 50-mL roll-on). DESIGN: A crossover quasiexperimental study design comparing 3 sunscreen dispenser types. SETTING: Children aged 5 to 12 years from public primary schools (grades 1-7) in Queensland, Australia. PARTICIPANTS: Children (n=87) and their parents randomly recruited from the enrollment lists of 7 primary schools. Each child provided up to 3 observations (n=258). INTERVENTION: Children applied sunscreen during 3 consecutive school weeks (Monday through Friday) for the first application of the day using a different dispenser each week. MAIN OUTCOME MEASURE: Thickness of sunscreen application (in milligrams per square centimeter). The dispensers were weighed before and after use to calculate the weight of sunscreen applied. This was divided by the coverage area of application (in square centimeters), which was calculated by multiplying the children's body surface area by the percentage of the body covered with sunscreen. RESULTS: Children applied their sunscreen at a median thickness of 0.48 mg/cm(2). Children applied significantly more sunscreen when using the pump (0.75 mg/cm(2)) and the squeeze bottle (0.57 mg/cm(2)) compared with the roll-on (0.22 mg/cm(2)) (P<.001 for both). CONCLUSIONS: Regardless of age, primary schoolchildren apply sunscreen at substantially less than 1.00 mg/cm(2), similar to what has been observed among adults. Some sunscreen dispensers seem to facilitate thicker application than others.
Resumo:
Virus-like particle-based vaccines for high-risk human papillomaviruses (HPVs) appear to have great promise; however, cell culture-derived vaccines will probably be very expensive. The optimization of expression of different codon-optimized versions of the HPV-16 L1 capsid protein gene in plants has been explored by means of transient expression from a novel suite of Agrobacterium tumefaciens binary expression vectors, which allow targeting of recombinant protein to the cytoplasm, endoplasmic reticulum (ER) or chloroplasts. A gene resynthesized to reflect human codon usage expresses better than the native gene, which expresses better than a plant-optimized gene. Moreover, chloroplast localization allows significantly higher levels of accumulation of L1 protein than does cytoplasmic localization, whilst ER retention was least successful. High levels of L1 (>17% total soluble protein) could be produced via transient expression: the protein assembled into higher-order structures visible by electron microscopy, and a concentrated extract was highly immunogenic in mice after subcutaneous injection and elicited high-titre neutralizing antibodies. Transgenic tobacco plants expressing a human codon-optimized gene linked to a chloroplast-targeting signal expressed L1 at levels up to 11% of the total soluble protein. These are the highest levels of HPV L1 expression reported for plants: these results, and the excellent immunogenicity of the product, significantly improve the prospects of making a conventional HPV vaccine by this means. © 2007 SGM.
Resumo:
A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 μg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.
Resumo:
Mycobacterium bovis BCG is considered an attractive live bacterial vaccine vector. In this study, we investigated the immune response of baboons to a primary vaccination with recombinant BCG (rBCG) constructs expressing the gag gene from a South African HIV-1 subtype C isolate, and a boost with HIV-1 subtype C Pr55 gag virus-like particles (Gag VLPs). Using an interferon enzyme-linked immunospot assay, we show that although these rBCG induced only a weak or an undetectable HIV-1 Gag-specific response on their own, they efficiently primed for a Gag VLP boost, which strengthened and broadened the immune responses. These responses were predominantly CD8+ T cell-mediated and recognised similar epitopes as those targeted by humans with early HIV-1 subtype C infection. In addition, a Gag-specific humoral response was elicited. These data support the development of HIV-1 vaccines based on rBCG and Pr55 gag VLPs. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: We have previously shown the high prevalence of oral anti-human papillomavirus type 16 (HPV-16) antibodies in women with HPV-associated cervical neoplasia. It was postulated that the HPV antibodies were initiated after HPV antigenic stimulation at the cervix via the common mucosal immune system. The present study aimed to further evaluate the effectiveness of oral fluid testing for detecting the mucosal humoral response to HPV infection and to advance our limited understanding of the immune response to HPV. Methods: The prevalence of oral HPV infection and oral antibodies to HPV types 16, 18 and 11 was determined in a normal, healthy population of children, adolescents and adults, both male and female, attending a dental clinic. HPV types in buccal cells were determined by DNA sequencing. Oral fluid was collected from the gingival crevice of the mouth by the OraSure method. HPV-16, HPV-18 and HPV-11 antibodies in oral fluid were detected by virus-like particle-based enzyme-linked immunosorbent assay. As a reference group 44 women with cervical neoplasia were included in the study. Results: Oral HPV infection was h ighest in children (9/114, 7.9%), followed by adolescents (4/78, 5.1%), and lowest in normal adults (4/116, 3.5%). The predominant HPV type found was HPV-13 (7/22, 31.8%) followed by HPV-32 (5/22, 22.7%). The prevalence of oral antibodies to HPV-16, HPV-18 and HPV-11 was low in children and increased substantially in adolescents and normal adults. Oral HPV-16 IgA was significantly more prevalent in women with cervical neoplasia (30/44, 68.2%) than the women from the dental clinic (18/69, 26.1% P = 0.0001). Significantly more adult men than women displayed oral HPV-16 IgA (30/47 compared with 18/69, OR 5.0, 95% CI 2.09-12.1, P < 0.001) and HPV-18 IgA (17/47 compared with 13/69, OR 2.4, 95% CI 0.97-6.2, P = 0.04). Conclusion: The increased prevalence of oral HPV antibodies in adolescent individuals compared with children was attributed to the onset of sexual activity. The increased prevalence of oral anti-HPV IgA in men compared with women was noteworthy considering reportedly fewer men than women make serum antibodies, and warrants further investigation. © 2006 Marais et al; licensee BioMed Central Ltd.
Resumo:
Recombinant human papillomavirus (HPV) virus-like particles (VLPs) made from the major capsid protein L1 are promising vaccine candidates for use as vaccines against genital and other HPV infections, and particularly against HPV-16. However, HPV-16 genotype variants have different binding affinities for neutralising mouse Mabs raised against HPV-16 L1 VLPs. This paper analyses, using a panel of well-characterised Mabs, the effects on the antigenicity of various C- and N-terminal deletants of HPV-16 L1 made in insect cells via recombinant baculovirus, of an A → T mutation at residue 266 (A266T), and of a C → G mutation at conserved position 428 (C428G). The effects of these changes on assembly of the variant L1s were studied by electron microscopy. Binding of Mab H16:E70 to A266T was reduced by almost half in comparison to wild type L1. Retention of the C-terminal region 428-483 was critical for the binding of conformation-specific Mabs (H16:V5, H16:E70, H16:U4 and H16:9A) whereas deletion of the nuclear localisation signal (NLS) or the C428G mutation or an N-terminal deletion (residues 2-9) did not affect the antigenicity. The N-terminal deletion resulted in a mixed population of 30 and 55 nm VLPs, which differs from the same construct expressed in Escherichia coli, whereas pentamer aggregates resulted from deletion of the 428-465 region or the C428G mutation. The results have implications both for considering use of single-genotype HPV vaccines, and for design of novel second-generation vaccines. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombinationdependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR. © 2010 SGM.
Resumo:
We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.
Resumo:
Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.