997 resultados para Genes, Dominant
Resumo:
We have cloned chromosomal genes mediating the aerobactin iron transport system from the enteroinvasive strain Escherichia coli 978-77. The physical map of the region spanning the siderophore biosynthesis genes and the upstream portion of the receptor gene in strain 978-77-derived clones was identical to the corresponding regions in pColV-K30, while the downstream portion was different. Recombinant plasmids derived from strain 978-77 encoded a 76-kDa outer membrane protein, in contrast to the 74-kDa polypeptide encoded by similar clones derived from pColV-K30. No differences were found in the uptake of ferric aerobactin mediated by either the 76-kDa- or the 74-kDa-encoding plasmids. In contrast, cells containing the 76-kDa-encoding plasmids showed a 16-fold decrease in susceptibility to cloacin compared with cells harboring the 74-kDa-encoding plasmids. Two classes of chimeric aerobactin receptor genes were constructed by exchanging sequences corresponding to the downstream portion from the aerobactin receptor gene of both systems. The pColV-K30-978-77 chimeric gene encoded a 76-kDa outer membrane protein which mediated a low level of cloacin susceptibility, whereas the 978-77-pColV-K30 type encoded a protein of 74 kDa determining a level of cloacin susceptibility identical to that mediated by pColV-K30.
Resumo:
We have cloned and studied the expression in Escherichia coli K-12 of chromosomal rfb genes determining the biosynthesis of the O7 lipopolysaccharide (LPS) antigen from E. coli K1 strain VW187. Two E. coli K-12 strains carrying recombinant cosmids gave positive coagglutination reactions with protein A-rich staphylococcal particles bearing an O7-specific rabbit polyclonal antiserum. Silver-stained polyacrylamide gels of total membranes extracted with hot phenol showed O side chain material which had O7 specificity as determined by immunoblotting experiments. However, the amount of O7 LPS expressed in E. coli K-12 was considerably lower than that produced by the wild-type strain VW187. Deletion and transposition experiments identified a region of about 17 kilobase pairs which is essential for the expression of O7 LPS. The existence of homologies between the O7 LPS genes and other E. coli O side chain genes was investigated by Southern blot hybridization experiments. An O7-specific probe fragment of 15 kilobase pairs did not hybridize to genomic DNA digests of E. coli strains belonging to several different O types, demonstrating that the O7 LPS genes are unique.
Resumo:
We have investigated the presence of the aerobactin system and the location of the aerobactin genes in enteroinvasive strains of Escherichia coli. Also, we cloned the aerobactin region and its flanking sequences from the chromosome of a strain of Shigella flexneri and compared the molecular organization of the aerobactin genes in the two genera. Of the 11 enteroinvasive E. coli strains studied, 5 possessed the aerobactin genes, which were located on the chromosome in each case. These strains produced and utilized aerobactin and also were susceptible to the bacteriocin cloacin-DF13. Restriction endonuclease mapping and hybridization experiments showed that the regions corresponding to the aerobactin-specific sequences were very similar in both enteroinvasive E. coli and S. flexneri. However, differences were found in the region corresponding to the aerobactin receptor gene. The regions flanking the aerobactin system in enteroinvasive E. coli and S. flexneri exhibited some similarities but were different from those in pColV-K30. Under iron-limiting conditions, aerobactin-producing enteroinvasive E. coli and S. flexneri synthesized outer-membrane proteins of 76 and 77 kDa, respectively, which cross-reacted immunologically with rabbit antiserum raised against the 74 kDa pColV-K30-encoded ferric aerobactin receptor.
Resumo:
The aerobactin-mediated iron uptake system encoded by pColV-K30 and other ColV plasmids has been associated with the ability of Escherichia coli strains to cause disease. We investigated whether the pColV-K30 aerobactin system is present in E. coli K1 VW187 isolated from a human neonate with meningitis. This strain exhibited a functional aerobactin-mediated iron uptake system, as assessed by a cross-feeding bioassay and by its sensitivity to cloacin, a bacteriocin that recognizes the outer membrane receptor for iron-aerobactin complexes. By using a variety of techniques, we could not find any plasmid harboring the aerobactin genes. Hybridization of restriction endonuclease-cleaved chromosomal DNA from strain VW187 with various clones containing subsets of the pColV-K30 aerobactin region showed that the aerobactin genes were located on a 10.5-kilobase-pair chromosomal HindIII restriction fragment which also contained IS1-like insertion sequences. The chromosomal aerobactin region showed a high degree of conservation when compared with the homologous region in plasmid pColV-K30, although it was located on a different restriction endonuclease site environment.
Resumo:
To investigate the association of genetic polymorphisms of the interleukin-18 (IL-18) pathway to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most cases of EAC arise in a background of reflux-induced BE. Genetic influences in this pathway are poorly understood. IL-18 is a multifunctional cytokine implicated in anti-tumor immunity. A number of polymorphisms of the IL-18 and IL-18 receptor-accessory protein (IL-18RAP) genes have been reported to alter gene expression and have recently been linked to inflammatory processes and various tumors, but have not heretofore been studied in BE and EAC.
Resumo:
Inherited disorders of renal structure and function are relatively common causes of end-stage renal disease requiring renal replacement therapy. A family history of haematuria, urinary tract infection or renal failure can alert the clinician to the possible diagnosis of underlying renal genetic abnormalities. In practice, the commonest inherited renal disorder is autosomal dominant polycystic kidney disease (ADPKD), characterized by multiple kidney cysts associated with hypertension and renal failure. Insights into the cell biology of ADPKD are informing new therapeutic approaches to limit cyst growth and prevent progressive renal failure. Non-visible haematuria is a clinical finding that presents a diagnostic challenge because it has so many possible causes. Mutations in the genes encoding collagen proteins within the glomerular basement membrane (GBM) can disrupt its normal barrier function. Thin basement membrane nephropathy, caused by GBM collagen gene mutations, is a relatively common cause of familial haematuria that normally has a good long-term prognosis. Alport syndrome is a rare and genetically heterogeneous condition leading to renal failure in men inheriting the X-linked gene defect. Single-gene defects may cause diverse renal tubular disorders, such as predisposition to renal calculi, diabetes insipidus, renal tubular acidosis or hypertension with associated electrolyte imbalance. Gene mutations responsible for familial renal cancer syndromes, such as tuberous sclerosis complex and von Hippel–Lindau disease, have also been identified
Resumo:
In normal populations of the common grass Holcus lanatus there is a polymorphism for arsenate resistance, manifested as suppressed phosphate uptake (SPU), and controlled by a major gene with dominant expression. A natural population of SPU plants had greater arbuscular-mycorrhizal colonization than wild type, nonSPU plants. It was hypothesized that, in order to survive alongside plants with a normal rate of phosphate (P) uptake, SPU plants would be more dependent on mycorrhizal associations. We performed an experiment using plants with SPU phenotypes from both arsenate mine spoils and uncontaminated soils, as well as plants with a nonSPU phenotype. They were grown with and without a mycorrhizal inoculum and added N, which altered plant P requirements. We showed that grasses with SPU phenotypes accumulated more shoot P than nonSPU plants, the opposite of the expected result. SPY plants also produced considerably more flower panicles, and had greater shoot and root biomass. The persistence of SPU phenotypes in normal populations is not necessarily related to mycorrhizal colonization as there were no differences in percentage AM colonization between the phenotypes. Being mycorrhizal reduced flower biomass production, as mycorrhizal SPU plants had lower shoot P concentrations and produced fewer flower panicles than non-mycorrhizal, nonSPU plants. We now hypothesize that the SPU phenotype is brought about by a genotype that results in increased accumulation of P in shoots, and that suppression of the rate of uptake is a consequence of this high shoot P concentration, operating by means of a homeostatic feedback mechanism. We also postulate that increased flower production is linked to a high shoot P concentration. SPU plants thus allocate more resources into seed production, leading to a higher frequency of SPU genes. Increased reproductive allocation reduces vegetative allocation and may affect competitive ability and hence survival, explaining the maintenance of the polymorphism. As mycorrhizal SPU plants behave more like nonSPU plants, AM colonization itself could play a major part in the maintenance of the SPU polymorphism.
Resumo:
This paper examines the structure of popular conceptions of the new genetics, and assesses why genetics has been so readily accepted in medicine and in the public discourse. Adapting Rene Dubos' classic analysis, Mirage of Health, we examine the new genetics by comparing it to Dubos' analysis of the structure and limits of germ theory. Germ theory focuses on the internal rather than the external environment, emphasises a doctrine of specific aetiology, and adopts the metaphor of the body as a machine. The germ theory model narrowed our vision about disease aetiology, proved misleading in some cases, yet remained the basis for clinical medical models of disease. In recent years, genetics has moved to the cutting edge of medical research and thinking about disease and behaviour. The structure of popular conceptions of the new genetics shows remarkable parallels with germ theory. This has eased the acceptance of genetics but simultaneously raises questions about these genetic explanations. An appearance and allure of specificity privileges genetic explanations in the public discourse; on examination, this specificity may prove to be a mirage.
Resumo:
Over the past two decades the pace and specificity of discoveries associating genetics with mental illness has accelerated, which is reflected in an increase in news coverage about the genetics of mental disorder. The news media is a major source of public understanding of genetics and a strong influence on public discourse. This paper examines the news coverage of genetics and mental illness (i.e., bipolar illness and schizophrenia) over a 25 year period, emphasizing the peak period of 1987-1994. Using a sample of 110 news stories from 5 major American newspapers and 3 news magazines, we identify the frame of "genetic optimism" which dominated the reporting of genetics and mental illness beginning in the mid-1980s. The structure of the frame is comprised of 3 elements: a gene for the disorder exists; it will be found; and it will be good. New discoveries of genes were announced with great fanfare, but the most promising claims could not be replicated or were retracted in short order. Despite these disconfirmations, genetic optimism persisted in subsequent news stories. While the scientific accuracy of the gene stories is high, the genetic optimism frame distorts some of the findings, misrepresents and reifies the impact of genes on mental disorder, and leaves no space for critics or an examination of potential negative impacts. The stances of reporters, scientists and editors may all in different ways contribute to the perpetuation of genetic optimism. Genetic optimism presents an overly sanguine picture of the state of genetics; as we enter the genetic age it is important to balance the extraneous "hype and hope" contained in news stories of genetics and mental illness.
Resumo:
BACKGROUND:
We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq.
RESULTS:13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03).
CONCLUSION:Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.
Resumo:
Objective: We tested the hypothesis that patients with difficult asthma have an increased frequency of certain genotypes that predispose them to asthma exacerbations and poor asthma control.
Methods: A total of 180 Caucasian children with confirmed asthma diagnosis were selected from two phenotypic groups; difficult (n = 112) versus mild/moderate asthma (n = 68) groups. All patients were screened for 19 polymorphisms in 9 candidate genes to evaluate their association with difficult asthma.
Key Results: The results indicated that LTA4H A-9188.G, TNFa G-308.A and IL-4Ra A1727.G polymorphisms were significantly associated with the development of difficult asthma in paediatric patients (p,0.001, p = 0.019 and p = 0.037, respectively). Haplotype analysis also revealed two haplotypes (ATA haplotype of IL-4Ra A1199.C, IL-4Ra T1570.C and IL- 4Ra A1727.G and CA haplotype of TNFa C-863.A and TNFa G-308.A polymorphisms) which were significantly associated with difficult asthma in children (p = 0.04 and p = 0.018, respectively).
Conclusions and Clinical Relevance: The study revealed multiple SNPs and haplotypes in LTA4H, TNFa and IL4-Ra genes which constitute risk factors for the development of difficult asthma in children. Of particular interest is the LTA4H A- 9188.G polymorphism which has been reported, for the first time, to have strong association with severe asthma in children. Our results suggest that screening for patients with this genetic marker could help characterise the heterogeneity of responses to leukotriene-modifying medications and, hence, facilitate targeting these therapies to the subset of patients who are most likely to gain benefit. ©2013 Almomani et al.
Resumo:
Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of "simple" cancer-associated chromosome deletions.
Resumo:
Subclones homozygous for JAK2V617F are more common in polycythemia vera (PV) than essential thrombocythemia (ET), but their prevalence and significance remain unclear. The JAK2 mutation status of 6495 BFU-E, grown in low erythropoietin conditions, was determined in 77 patients with PV or ET. Homozygous-mutant colonies were common in patients with JAK2V617F-positive PV and were surprisingly prevalent in JAK2V617F-positive ET and JAK2 exon 12-mutated PV. Using microsatellite PCR to map loss-of-heterozygosity breakpoints within individual colonies, we demonstrate that recurrent acquisition of JAK2V617F homozygosity occurs frequently in both PV and ET. PV was distinguished from ET by expansion of a dominant homozygous subclone, the selective advantage of which is likely to reflect additional genetic or epigenetic lesions. Our results suggest a model in which development of a dominant JAK2V617F-homzygous subclone drives erythrocytosis in many PV patients, with alternative mechanisms operating in those with small or undetectable homozygous-mutant clones.