1000 resultados para Gauss beam
Resumo:
利用100MeV/u的12C6+离子束辐照酵母Saccharomyces cerevsiea YY,选育出一株高产突变菌株C03A,考察C03A发酵过程中不同温度、pH、糖汁浓度对发酵的影响。通过正交实验确定最佳发酵条件为:糖汁浓度24%、温度35℃、pH5.0。在10L发酵罐实验中,C03A发酵速率相对原始菌株高,36h发酵完全,比原始菌株缩短12h;发酵产酒率达到13.2%(V/V),比原始菌株高1.6%(V/V)。
Resumo:
In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.
Resumo:
HIRFL is a tandem cyclotron complex for heavy ion. On the beam line between SFC and SSC, there is a stripper. Behind it, the distribution of charge states of beam is a Gauss distribution. The equilibrium charge state Q_0 is selected by 1BO2(a 50° dipole behind the stripper) and delivered to SSC. One of two new small beam line (named SLAS) after 1B02 will be builded in or der to split and deliver the unused ions of charge states (Q_0 ± n) to aspecific experimental area. Q_0 ± n ions are septumed and separated from initial(Q_0) ion beam by two septum magnets SM1, SM2. The charge state selected by SM1 will be Q_0 ± 1(6 ≤ Q_0 < 17), Q_0 ± 2(17 ≤ Q_0 < 33) and Q_0 ± 3 (Q_0 ≥ 33) forming a beam in one of the two possine new beam line with the stripping energy of (0.2 to 9.83 Mev/A), an emittance of 10π mm.mrad in the two transverse planes and an intensity ranging from 10~(11) pps for z ≤ 10 to some 10~5 pps for the heaviest element. Behind SM2, a few transport elements (three dipoles and seven qudrupoles) tra nsport Q_0 ± n beam to target positions T1, T2 (see fig. 1) and generate small beam spots (φ ≤ 4mm, φ ≤ 6mm). The optics design of the beam line has been done based on SLAC-75 (a first and second - order matrix theory). beam optics calculation has been worked out with the TRANSPORT program. The design is a very economical thinking, because without building a new accelerator we can obtain a lower energy heavy ion beam to provide for a lot of atomic and solid state physical experiments
Resumo:
Cluster assisted photoionization processes of benzene, which was seeded in argon, induced by an intense 25 ns Nd-YAG laser has been studied by means of time-of-flight mass spectrometry. At the laser intensity of 10(11) W/cm(2), multicharged ions Cq+ (q = 2-3) with kinetic energy up to 150 eV were observed in the mass spectra. Strong evidences Support that these ions are formed in the Coulomb explosion of multicharged benzene cluster ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Double-ceramic-layer(DCL) thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies and cyclic oxidation behavior of the DCL coating were studied. Both the X-ray diffraction (XRD) and thermogravimetric-differential thermal analysis (TG-DTA) prove that LZ and YSZ have good chemical applicability to form a DCL coating. The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ coating. and even longer than that of the single layer YSZ coating. The failure of the DCL coating is a result of both the bond coat oxidation and the thermal strain between bond coat and ceramic layer generated by the thermal expansion mismatch.
Resumo:
BACKGROUND: Stimuli-sensitive or intelligent hydrogels have been investigated for many biomedical and pharmaceutical applications. Those hydrogels with dual sensitivity will have more extensive potential applications. The aim of the work presented was to prepare a series of thermo- and pH-sensitive hydrogels based on poly(vinylmethyl ether) (PVME) and carboxymethylchitosan (CMCS). The hydrogels were crosslinked using electron beam irradiation (EB) or using glutaraldehyde (GA) as a crosslinker at room temperature.
Resumo:
Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.
Resumo:
Poly(propylene carbonate) (PPC) showed predominantly degradation under electron-beam irradiation, accompanied by deterioration of its mechanical performance due to sharp decrease of the molecular weight. Crosslinked PPC was prepared by addition of polyfunctional monomer (PFM) to enhance the mechanical performance of PPC. When 8 wt% of PFM like triallyl isocyanurate (TAIL) was added, crosslinked PPC with a gel fraction of 60.7% was prepared at 50 kGy irradiation dose, which showed a tensile strength at 20 degrees C of 45.5 MPa, whereas it was only 38.5 MPa for pure PPC. The onset degradation temperature (T-i) and glass transition temperature (T-g) of this crosslinked PPC was 246 degrees C and 45 degrees C, respectively, a significant increase related to pure PPC of 211 degrees C and 36 C. Therefore, thermal and mechanical performances of PPC could be improved via electron-beam irradiation in the presence of suitable PFM.
Resumo:
In this paper, the polypyrrole (PPy) film modified electrodes are used as an electroreleasing reservoir. The electrochemically controlled release of 5-fluorouracil (5-FU) from a PPy film modified electrode to aqueous electrolytes is studied by the in situ probe beam deflection (PBD) method combined with cyclic voltammetry (CV) and chronoamperometry (CA). The PBD results reveal that the release of 5-FU from PPy film depends on the electrochemical redox process of the PPy film electrode. The released amount is controlled by the reduction potential and is proportional to the thickness of the film. The exchange of 5-FU anions with Cl- on an open circuit is slow on the time scale of minutes, but the release of 5-FU anions can proceed quickly at -0.6 V (vs Ag/AgCl). The amount of released 5-FU decreases with the time that the PPy film is soaked in aqueous solution. (C) 1998 Elsevier Science Ltd. All rights reserved.