967 resultados para Gaudin-Yang energy density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behavior of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) at elevated temperatures (e.g., from 125 to 128 degrees C), was studied using transmission electron microscopy and electron diffraction. The results show that epitaxial crystallization of HDPE on the highly oriented iPP substrates occurs only in a thin layer which is in direct contact with the iPP substrate, when the HDPE is crystallized from the melt on the oriented iPP substrates at 125 degrees C. The critical layer thickness of the epitaxially crystallized HDPE is not more than 30 nm when the HDPE is isothermally crystallized on the oriented iPP substrates at 125 degrees C. When the crystallization temperature is above 125 degrees C, the HDPE crystallizes in the form of crystalline aggregates and a few individual crystalline lamellae. But both the crystalline aggregates and the individual crystalline lamellae have no epitaxial orientation relationship with the iPP substrate. This means that there exists a critical crystallization temperature for the occurrence of epitaxial crystallization of HDPE on the melt-drawn oriented iPP substrates (i.e., 125 degrees C). (C) 1997 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of high-density polyethylene (HDPE) with novel linear low-density polyethylene (LLDPE) samples in the whole range of compositions were investigated by means of differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The LLDPEs are ethylene/octene-1 copolymers prepared with a single-site catalyst, with a narrower distribution of branches compared to Ziegler-Natta type polymers. It was found that cocrystallization or separate crystallization in the blends profoundly depends on the content of branches in the LLDPE, while the critical branch content of the novel LLDPE for separate crystallization is much lower than that of commercial LLDPE (prepared with Ziegler-Natta catalysts). This implies that the miscibility of linear and branched polyethylene is also affected by the distribution of branches. The marked expansion of the unit cell in cocrystals, which are formed by HDPE with the novel LLDPE, indicates that the branches are included in the crystal lattice during the cocrystallization process. The result is very helpful to understand the phenomenon that the unit cell dimensions of commercial branched polyethylene are larger than those of linear polyethylene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possible changes in the structure and properties of maleated polyethylene (HDPE-MA) at different degrees of grafting (D.G.) were examined. At the level of 1.6 maleic anhydride (MA)/100 ethylene units E, 70-80% of crystallinity of the parent PE was retaine

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial crystallization of high-density polyethylene (HDPE) on isotactic polypropylene (iPP) in solution-cast films has been investigated by electron microscopy. The specimen-tilt technique of electron microscopy has been used to study the structural relationship between HDPE and iPP crystals. HDPE exhibits different crystalline morphologies in the two basic types of iPP spherulite textures, cross-hatched and lathlike regions. In the former, the crystallographic c axis of HDPE lamellae is in the film plane, while in the latter, the c axis of HDPE crystallites is at an angle of about 50-degrees with the normal of the film. In both structural regions of iPP, however, the contact planes of epitaxial growth are (0 1 0) for iPP and (1 0 0) for HDPE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In laboratory conditions, effects of rearing temperature and stocking density were examined on hatching of fertilized egg and growth of auricularia larvae of Apostichopus japonicus respectively. Data series like larval length and density, metamorphic time, and survival rate of the larvae were recorded. Statistics showed that for A. japonicus, survival rate (from fertilized egg to late auricularia) decreased significantly with the increasing rearing temperature (P < 0.05). At different temperatures SGR was statistically significant as well (P < 0.05) from day 1, and maximal SGR was found on day 9 at 24A degrees C (159.26 +/- 3.28). This study clearly indicated that at low temperature (< 24A degrees C), metamorphic rate was remarkably higher than at higher temperature (> 26A degrees C). Hatching rate was significantly different between 0.2-5 ind./ml groups and 20-50 ind./ml groups. Rearing larvae at the higher density had the smaller maximal-length, whereas needed longer time to complete metamorphosis. This study suggested that 21A degrees C and 0.4 ind./ml can be used as the most suitable rearing temperature and stocking density for large -scale artificial breeding of A. japonicus's larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pond farming for sea cucumber has developed rapidly along the northern coast of China in the recent years. Holothurians inhabiting ponds undergo seasonal fluctuations of salinity. This study deals with the bioenergetic responses of pond-cultured sea cucumbers Apostichopus japonicus (wet weight of 37.5 +/- 1.8 g) to different water salinities [22, 27, 31.5, and 36 practical salinity units (psu)] at 15 degrees C in the laboratory to determine the influence of water salinity on growth and energy allocation in this species. Results show that ingested energy and scope for growth (SFG) were highest at 31.5 psu and then decreased when water salinity was below or above this point. Although energy ingested was lowest at 36 psu, the lowest SFG occurred at 22 psu (only 102.68 +/- 14.26 J g(-1) d(-1)) because animals reared at 22 psu spent much more consumed energy on feces (72.19%), respiration (21.70%), and excretion (2.59%), leaving less energy for growth (3.52%). Results suggest that pond-cultured sea cucumbers could tolerate chronic salinity fluctuations at a range of 22 to 36 psu and grew better between 27 and 31.5 psu, but decreased at salinities above and below the mentioned salinity range. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, bivalve feces and powdered algae have been used as the food sources of holothurians in China. In this study, growth and energy budget for sea cucumber Apostichopus japonicus (Selenka) with initial wet body,veights of 32.5 1.0 g (mean +/- SE, n=45) when fed with five different granule diets containing dried bivalve feces and/or powdered algae in water temperature 13.2-19.8 degrees C and salinity 30-32ppt were quantified in order to investigate how diets influence growth and energy distribution and to find out the proper diet for land-based intensive culture of this species. Results showed that diets affected the food ingestion, feces production, food conversion efficiency and apparent digestive ratios, hence the growth and energy budget. Sea cucumbers fed with dried feces of bivalve showed poorer energy absorption, assimilation and growth than individuals fed with other four diets; this could be because feces-drying process removed much of the benefits. Dried bivalve feces alone, therefore, were not a suitable diet for sea cucumbers in intensive cultivation. The mixed diets of feces and powered algae showed promising results for cultivation of sub-adult Apostichopus japonicus, while animals fed with powdered algae alone, could not obtain the best growth. According to SGR of tested animals, a formula of 75% feces and 25% powdered algae is the best diet for culture of this species. Extruded diets were used in the present experiment to overcome shortcomings of the traditional powdered feeds, however, it seems a conflict exists between drying bivalve feces to form extruded diets and feeding sea cucumbers with fresh feces which contain beneficial bacteria. Compared with other echinoderms, in holothurians the energy deposited in growth is lower and the energy loss in feces accounts for the majority of the ingested energy. Such detailed information could be helpful in further development of more appropriate diets for culture of holothurians. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m(-2), with daily C, N and P biodeposition rates of 3.06 x 10(-1), 3.86 x 10(-2) and 9.80 x 10(-3) g m(-2), respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic-benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic-pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of experiments was conducted to evaluate the effects of diet, stocking density, and environmental factors on growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum larvae. These experiments examined the following factors: diet (Isochrysts spp., Chlorella spp., and a mixture of Isochrysis spp. and Chlorella spp. [ 1: 1 w/w]), stocking density (5, 10, 15, and 20 larvae ml(-1)), light intensity (un-shaded, partially shaded, and fully shaded), water filtration (unfiltered and sand-filtered), water exchange (50% and 100% once every other day, 25%, 50%, and 100% once daily; 50% and 100% twice daily), and the use of substrate (with and without sand as the substrate). Results indicated that Chlorella spp. could replace 50% of Isochrysis spp. as a food source for the Manila clam larvae without affecting growth, survival, and metamorphosis. Larval growth decreased significantly with increasing stocking density. A density of 5-10 larvae ml(-1) appeared to be optimal for normal growth of Manila clam larvae. Neither diet nor stocking density used in the study had a significant effect on larval survival. Under partially shaded (light intensity = 1000-5000 lx) and fully shaded (light intensity <500 lx) conditions, larval growth was significantly faster than under direct sunlight (un-shaded). A water exchange rate of 50% twice daily provided optimum larval growth. Larvae grew significantly faster in the unfiltered water than in the sand-filtered water. Using sand as the substrate in the culture system significantly depressed the metamorphosis rate. The type and particle size of sand used as the substrate did not significantly affect growth and metamorphosis rates of the larvae. (C) 2005 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the engineering reinforcement of-rock and soil mass, engineers must consider how to obtain better reinforcing effect at the cost of less reinforcing expense, which, in fact, is the aim of reinforcement design. In order to accomplish the purpose, they require not only researching the material used to reinforce and its structure, but also taking into account of several important geological factors, such as the structure and property of rock and soil mass. How to improve the reinforcing effect according to engineering geomechanical principle at the respect of the reinforcement of engineering soil and rock mass is studied and discussed in this paper. The author studies the theory, technology and practice of geotechnical reinforcement based on engineering geomechanics, taking example for the soil treatment of Zhengzhou Airport, the effect analysis of reinforcement to the slope on the left bank of Wuqiangxi Hydropower Station and the reinforcing design of the No. 102 Landslide and unique sand-slide slope on the Sichuan-Tibet Highway. The paper is comprised of two parts for the convenience of discussion. In the first part, from the first chapter to the fifth chapter, trying to perform the relevant research and application at the viewpoint of soil mass engineering geomechanics, the author mainly discusses the study of reinforcing soft ground soil through dynamical consolidation and its application. Then, in the second part, from the sixth chapter to the eleventh chapter, the study of new technologies in the rock slope reinforcement and their application are discussed. The author finds that not only better reinforcing effect can be gained in the research where the principle and method of rock mass engineering geomechanics is adopted, but also new reinforcing technologies can be put forward. Zhengzhou Airport is an important one in central plains. It lies on Yellow River alluvial deposit and the structure of stratum is complex and heterogeneous. The area of airport is very large, which can result in differential settlement easily, damage of airport and aircraft accident, whereas, there are no similar experiences to dispose the foundation, so the foundation treatment become a principal problem. During the process of treatment, the method of dynamic compaction was adopted after compared with other methods using the theory of synthetic integration. Dynamic compaction is an important method to consolidate foundation, which was successfully used in the foundation of Zhengzhou Airport. For fill foundation, controlling the thickness of fill so as to make the foundation treatment can reach the design demand and optimum thickness of the fill is a difficult problem. Considering this problem, the author proposed a calculation method to evaluate the thickness of fill. The method can consider not only the self-settlement of fill but also the settlement of the ground surface under applied load so as to ensure the settlement occurred during the using period can satisfy the design demand. It is proved that the method is correct after using it to choose reasonable energy of dynamic compaction to treat foundation. At the same time, in order to examine the effect of dynamic compaction, many monitor methods were adopted in the test such as static loading test, modulus of resilience test, deep pore pressure -test, static cone penetration test and the variation of the pore volume measurement. Through the tests, the author summarized the discipline of the accumulation and dissipation of pore pressure in Yellow River alluvial deposit under the action of dynamic compaction, gave a correct division of the property change of silt and clay under dynamic compaction, determined the bearing capacity of foundation after treatment and weighted the reinforcing effect of dynamic consolidation from the variation of the soil particle in microcosmic and the parameter of soil mass' density. It can be considered that the compactness of soil is in proportion to the energy of dynamic compaction. This conclusion provided a reference to the research of the "Problem of Soil Structure-the Central Problem of Soil Mechanics in 21 Century ". It is also important to strengthen rock mass for water conservancy and electric power engineering. Slip-resistance pile and anchoring adit full of reinforced concrete are usually adopted in engineering experience to strengthen rock mass and very important for engineering. But there also some deficiency such as the weakest section can't be highlighted, the monitor is inconvenient and the diameter of pile and adit is very large etc. The author and his supervisor professor Yangzhifa invented prestressed slip-resistance pile and prestressed anchoring adit full of reinforced concrete, utilizing the advantage that the prestressed structure has better anti-tensile characteristic (this invention is to be published). These inventions overcome the disadvantages of general slip-resistance pile and anchoring adit full of reinforced concrete and have the functions of engineering prospecting, strengthening, drainage and monitor simultaneous, so they have better strengthened effect and be more convenient for monitor and more economical than traditional methods. Drainage is an important factor in treatments of rock mass and slop. In view of the traditional drainage method that drainage pore often be clogged so as to resulted in incident, professor Yangzhifa invented the method and setting of guide penetration by fiber bundle. It would take good effect to use it in prestressed slip-resistance pile and anchoring adit full of reinforced concrete. In this paper, the author took example for anchoring adit full of reinforced concrete used to strengthen Wuqiangxi left bank to simulate the strengthened effect after consolidated by prestressed slip-resistance pile, took example for 102 landslide occurred along Sichuan-Tibet highway to simulate the application of slip-resistance pile and the new technology of drainage. At the same time the author proposed the treatment method of flowing sand in Sichuan-Tibet highway, which will benefit the study on strengthening similar engineering. There are five novelties in the paper with the author's theoretical study and engineering practice: 1. Summarizing the role of pore water pressure accumulation and dissipation of the Yellow River alluvial and diluvial soil under the action of dynamical consolidation, which has instructive significance in the engineering construction under the analogical engineering geological conditions in the future. It has not been researched by the predecessors. 2. Putting forward the concept of density D in microcosmic based on the microcosmical structure study of the soil sample. Adopting D to weight the reinforcing effect of dynamic consolidation is considered to be appropriate by the means of comparing the D values of Zhengzhou Airport's ground soil before with after dynamically consolidating reinforcement, so a more convenient balancing method can be provided for engineering practice. 3. According to the deep research into the soil mass engineering geology, engineering rock and soil science, soil mechanics, as well as considerable field experiments, improving the consolidating method in airport construction, from the conventional method, which is dynamically compactmg original ground surface firstly, then filling soil and dynamically layer-consolidating or layer-compacting at last to the upgraded method, which is performing dynamical consolidation after filling soil to place totally at the extent of the certain earth-filling depth. The result of the dynamical consolidation not only complies with the specifications, but also reduces the soil treatment investment by 10 million RMB. 4. Proposing the method for calculating the height of the filled soil by the means of estimating the potential displacement produced in the original ground surface and the filled earth soil under the possible load, selecting the appropriate dynamically-compacting power and determining the virtual height of the filled earth soil. The method is proved to be effective and scientific. 5. According to the thought of Engineering Geomechanics Metal-Synthetic Methodology (EGMS), patenting two inventions (to the stage of roclamation, with Professor Yang Zhi-fa, the cooperative tutor, and etc.) in which multi-functions, engineering geological investigation, reinforcement, drainage and strength remedy, are integrated all over in one body at the viewpoint of the breakage mechanism of the rock slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IR spectrum of 4-methyl-3-penten-2-one is interpreted with the aid of normal coordinate calculations within the Onsager self-consistent reaction field (SCRF) model, using a density functional theory (DFT) method at the Becke3LYP/6-31G* level. The solvent effects on the geometry, energy, dipole moment, and vibrational frequencies of 4-methyl-3-penten-2-one in the solution and in the liquid phase are calculated using the Onsager SCRF model. The calculated vibrational frequencies in the liquid-phase are in good agreement with the experimental values. The solvent reaction field has generally weak influence. For the two main bands of C=C and C=O mixed vibrational modes, small frequency shifts (5-6 cm(-1)), but relatively large changes in IR intensities (up to 101 km mol(-1) in the liquid phase) are found. (C) 1999 Elsevier Science BV. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habbal, Shadia Rifai; Morgan, Huw; Johnson, Judd; Arndt, Martina Belz; Daw, Adrian; Jaeggli, Sarah; Kuhn, Jeff; Mickey, Don, LOCALIZED ENHANCEMENTS OF Fe+10 DENSITY IN THE CORONA AS OBSERVED IN Fe xi 789.2 nm DURING THE 2006 MARCH 29 TOTAL SOLAR ECLIPSE, The Astrophysical Journal, Volume 663, Issue 1, pp. 598-609

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Similarly to protein folding, the association of two proteins is driven by a free energy funnel, determined by favorable interactions in some neighborhood of the native state. We describe a docking method based on stochastic global minimization of funnel-shaped energy functions in the space of rigid body motions (SE(3)) while accounting for flexibility of the interface side chains. The method, called semi-definite programming-based underestimation (SDU), employs a general quadratic function to underestimate a set of local energy minima and uses the resulting underestimator to bias further sampling. While SDU effectively minimizes functions with funnel-shaped basins, its application to docking in the rotational and translational space SE(3) is not straightforward due to the geometry of that space. We introduce a strategy that uses separate independent variables for side-chain optimization, center-to-center distance of the two proteins, and five angular descriptors of the relative orientations of the molecules. The removal of the center-to-center distance turns out to vastly improve the efficiency of the search, because the five-dimensional space now exhibits a well-behaved energy surface suitable for underestimation. This algorithm explores the free energy surface spanned by encounter complexes that correspond to local free energy minima and shows similarity to the model of macromolecular association that proceeds through a series of collisions. Results for standard protein docking benchmarks establish that in this space the free energy landscape is a funnel in a reasonably broad neighborhood of the native state and that the SDU strategy can generate docking predictions with less than 5 � ligand interface Ca root-mean-square deviation while achieving an approximately 20-fold efficiency gain compared to Monte Carlo methods.