901 resultados para GP 43
Resumo:
O presente estudo exegético tem por objetivo demonstrar a face materna de Javé revelada nos textos de Dêutero-Isaías, tendo como fonte principal o oráculo de salvação de Is 43,1-7. Para tal, partimos da análise do contexto literário, histórico e religioso de Dêutero-Isaías, paraentão fazer a análise exegética do texto proposto, através da qual enfocaremos, dentre os diversos conteúdos, a característica materna apresentada na perícope. Compreendendo que um texto surge dentro de um ambiente social, evidenciaremos, com base nos escritos de Dêutero-Isaías, a comunidade exilada à qual se dirigem profetas e profetisas. Por fim, combinando os atributos maternos das deusas Asherah e Ishtar com a incipiente concepção materna de Javé apresentado por Oséias, propomos a face materna de Deus com base nos textos dêuteroisaiânicos, em especial, Is 43,1-7.
Resumo:
An in vitro mouse slice preparation from control and MPTP-treated mice in which functional reciprocal GP-STN connectivity is maintained, does not produce oscillatory bursting or synchronous activity neuronal activity. Pharmacological interventions that produce bursting activity do so without concomitant neuronal synchrony, or a requirement for glutamate or GABA transmission. Pre-treatment with MPTP did not alter this behaviour. Thus, we have no evidence that the functionally connected, but isolated, GP — STN network can act as a pacemaker for synchronous correlated activity in the basal ganglia and must conclude that other inputs such as those from cortex and/or striatum are required.
Resumo:
To further characterize the neuropathology of the heterogeneous molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP).
Resumo:
Studies suggest that frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP) is heterogeneous with division into four or five subtypes. To determine the degree of heterogeneity and the validity of the subtypes, we studied neuropathological variation within the frontal and temporal lobes of 94 cases of FTLD-TDP using quantitative estimates of density and principal components analysis (PCA). A PCA based on the density of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN), surviving neurons, enlarged neurons (EN), and vacuolation suggested that cases were not segregated into distinct subtypes. Variation in the density of the vacuoles was the greatest source of variation between cases. A PCA based on TDP-43 pathology alone suggested that cases of FTLD-TDP with progranulin (GRN) mutation segregated to some degree. The pathological phenotype of all four subtypes overlapped but subtypes 1 and 4 were the most distinctive. Cases with coexisting motor neuron disease (MND) or hippocampal sclerosis (HS) also appeared to segregate to some extent. We suggest: 1) pathological variation in FTLD-TDP is best described as a ‘continuum’ without clearly distinct subtypes, 2) vacuolation was the single greatest source of variation and reflects the ‘stage’ of the disease, and 3) within the FTLD-TDP ‘continuum’ cases with GRN mutation and with coexisting MND or HS may have a more distinctive pathology.
Resumo:
Mutations of the progranulin (GRN) gene are a major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400-800 µm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in the dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.
Resumo:
Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD–TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP ‘continuum’ overlapping with FTLD-TDP disease subtypes 2 and 3.
Resumo:
Aims: Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe. Methods: Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting. Results: Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, neuronal cytoplasmic inclusions, dystrophic neurites and vacuolation were abundant in the upper laminae and glial inclusions, neuronal intranuclear inclusions, abnormally enlarged neurones, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases; their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated. Conclusions: Laminar distribution of pathological features in 10 sporadic cases of FTLD-TDP is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feedforward and feedback cortico-cortical connections may be compromised in FTLD-TDP. © 2012 The Authors. Neuropathology and Applied Neurobiology © 2012 British Neuropathological Society.
Resumo:
The transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) is an RNA binding protein encoded by the TARDPB gene. Abnormal aggregations of TDP-43 in neurons in the form of neuronal cytoplasmic inclusions (NCI) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of TDP-43 in FTLD-TDP, the spatial patterns of the NCI were studied in frontal and temporal cortex of FTLD-TDP cases using a phosphorylation dependent anti-TDP-43 antibody (pTDP-43). In many regions, the NCI formed clusters and the clusters were distributed regularly parallel to the tissue boundary. In about 35% of cortical regions, cluster size of the NCI was within the size range of the modular columns of the cortex. The spatial patterns of the pTDP-immunoreactive inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody and also similar to inclusions characterized by other molecular pathologies such as tau, ?-synuclein and ‘fused in sarcoma’ (FUS). In conclusion, the data suggest degeneration of cortical and hippocampal anatomical pathways associated with accumulation of cellular pTDP-43 is characteristic of FTLD-TDP. In addition, the data are consistent with the hypothesis of cell to cell transfer of pTDP-43 within the brain.
Resumo:
Population measures for genetic programs are defined and analysed in an attempt to better understand the behaviour of genetic programming. Some measures are simple, but do not provide sufficient insight. The more meaningful ones are complex and take extra computation time. Here we present a unified view on the computation of population measures through an information hypertree (iTree). The iTree allows for a unified and efficient calculation of population measures via a basic tree traversal. © Springer-Verlag 2004.
Resumo:
The aim of this paper is to identify benchmark cost-efficient General Practitioner (GP) units at delivering health care in the Geriatric and General Medicine (GMG) specialty and estimate potential cost savings. The use of a single medical specialty makes it possible to reflect more accurately the medical condition of the List population of the Practice so as to contextualize its expenditure on care for patients. We use Data Envelopment Analysis (DEA) to estimate the potential for cost savings at GP units and to decompose these savings into those attributable to the reduction of resource use, to altering the mix of resources used and to those attributable to securing better resource 'prices'. The results reveal a considerable potential for savings of varying composition across GP units. © 2013 Elsevier Ltd.
Resumo:
Familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is most commonly caused by progranulin (GRN) gene mutation. To characterize cortical degeneration in these cases, changes in density of the pathology across the cortical laminae of the frontal and temporal lobe were studied in seven cases of FTLD-TDP with GRN mutation using quantitative analysis and polynomial curve fitting. In 50% of gyri studied, neuronal cytoplasmic inclusions (NCI) exhibited a peak of density in the upper cortical laminae. Most frequently, neuronal intranuclear inclusions (NII) and dystrophic neurites (DN) exhibited a density peak in lower and upper laminae, respectively, glial inclusions (GI) being distributed in low densities across all laminae. Abnormally enlarged neurons (EN) were distributed either in the lower laminae or were more uniformly distributed across the cortex. The distribution of all neurons present varied between cases and regions, but most commonly exhibited a bimodal distribution, density peaks occurring in upper and lower laminae. Vacuolation primarily affected the superficial laminae and density of glial cell nuclei increased with distance across the cortex from pia mater to white matter. The densities of the NCI, GI, NII, and DN were not spatially correlated. The laminar distribution of the pathology in GRN mutation cases was similar to previously reported sporadic cases of FTLD-TDP. Hence, pathological changes initiated by GRN mutation, and by other causes in sporadic cases, appear to follow a parallel course resulting in very similar patterns of cortical degeneration in FTLD-TDP.
Resumo:
Abnormal protein aggregates of transactive response (TAR) DNA-binding protein (TDP-43) in the form of neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), neuronal internuclear inclusions (NII), and dystrophic neurites (DN) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of phosphorylated TDP-43 (pTDP-43) in neurodegeneration in FTLD-TDP, the spatial patterns of the pTDP-43-immunoreactive NCI, GI, NII, and DN were studied in frontal and temporal cortex in three groups of cases: (1) familial FTLD-TDP caused by progranulin (GRN) mutation, (2) a miscellaneous group of familial cases containing cases caused by valosin-containing protein (VCP) mutation, ubiquitin associated protein 1 (UBAP1) mutation, and cases not associated with currently known genes, and (3) sporadic FTLD-TDP. In a significant number of brain regions, the pTDP-43-immunoreactive inclusions developed in clusters and the clusters were distributed regularly parallel to the tissue boundary. The spatial patterns of the inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody. The spatial patterns and cluster sizes of the pTDP-43-immunoreactive inclusions were similar in GRN mutation cases, remaining familial cases, and in sporadic FTLD-TDP. Hence, pathological changes initiated by different genetic factors in familial cases and by unknown causes in sporadic FTLD-TDP appear to follow a parallel course resulting in very similar patterns of degeneration of frontal and temporal lobes.
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD-TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP 'continuum' overlapping with FTLD-TDP disease subtypes 2 and 3. © 2012 Nova Science Publishers, Inc. All rights reserved.