996 resultados para GOLD CATALYST
Resumo:
Polyaniline/multi-walled carbon nanotube/gold (PANI/MWNT/Au) composite film was synthesized via a two-step electrochemical process. First the mixture of aniline and MWNT was heated at refluxing and was electropolymerized. Then, the An nanoparticles were dispersed into the film of PANI/MWNT by electrochemical reduction of HAuCl4. The morphology of sample was analyzed by scanning electron microscopy (SEM). Raman measurement indicates a well electrochemical deposition of PANI on MWNT, and XPS result confirms the formation of Au-0 nanoparticles. Further, cyclic voltammograms show that the film exhibits a good electrochemical activity and electrocatalysis towards ascorbic acid. Based on these investigations, a formation mechanism of the PANI/MWNT composite film was proposed.
Resumo:
In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol(-1) to 17.38 kJ mol(-1) after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm(-2) mg(-1) (Pt) to 130 mW cm(-2) mg(-1) after the anode electrode adsorbed FeTSPc.
Resumo:
Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as -0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.
Resumo:
Atom transfer radical polymerization has been used to successfully synthesize polybutadiene. This was achieved by using MoO2Cl2/triphenyl phosphine as the catalyst and the various organic halide compounds such as methyl-2-chloropropionate, CCl4, 1,4-dichloromethyl benzene, I-phenylethyl chloride, and benzyl chloride as initiators. The monomer conversion increased up to 50% with polymerization time. The polydispersity indices of the polymers were as high as above 1.5. However, the polymerizations were controlled and the polydispersity indices of the polymers were less than 1.5 throughout the polymerization in reverse atom transfer radical polymerization. The chemical structure of the polymer obtained was characterized by (HNMR)-H-1 and FTIR. The valency states of molybdenum in this reactive system were detected by UV-vis spectra.
Resumo:
A one-step method has been developed for synthesizing gold-polyaniline (Au@PANI) core-shell particles by using chlorauric acid (HAuCl4) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au@PANI particles was also proposed based on the results of control experiments.
Resumo:
Multi-walled carbon nanotube (MWCNT)/thionine/gold nanoparticle composites were prepared by binding gold nanoparticles to the surfaces of thionine-coated carbon nanotubes. TEM images show gold nanoparticles distributed uniformly on nanotube walls and ends. UV-Vis, Raman, FT-IR, and zeta potential measurements were used to examine the properties of the resulting products. The composites demonstrate significant electrocatalytic activity for oxygen reduction. Although only gold nanoparticles were investigated here, the method could be easily extended to attach other metallic nanoparticles to the sidewalls of carbon nanotubes.
Resumo:
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.
Resumo:
Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.
Resumo:
A simple method has been developed to assemble gold nanoparticles to generate 1D assemblies by the assistance of silver ions. The lengths of nanoparticle chains can be controlled by adjusting the content of silver ions in the system. The assembly procedure of gold nanoparticles chains requires no template. The gold nanoparticle chains were characterized using TEM and XPS techniques.
Resumo:
Direct methanol fuel cell (DMFC) has attracted wide attention due to its many advantages. However, its practical application is limited by the low electrocatalytic activity of the anodic Pt/C catalyst usually used for the methanol oxidation. In this paper, in order to increase the electrocatalytic performance of the Pt/C catalyst for the methanol oxidation, the black carbon, usually used as the supporter, was pretreated with CO2, air, HNO3 or H2O2. The cyclic voltarnmetric results indicated that the current densities of the anodic peak of methanol oxidation at the Pt/C catalysts with the black carbon pretreated with CO2,air, HN03, H202 and untreated black carbon were 39, 33, 32, 20 and 18 mA center dot cm(-2), respectively, illustrating that among the above five kinds of the Pt/C catalysts, the Pt/C catalyst with the black carbon pretreated with CO2 shows the best electrocatalytic activity and stability for the methanol oxidation. Its main reason is that the CO2 pretreatment could reduce the content of the oxygen-containing groups on the surface of the black carbon and increase the content of graphite in the black carbon, leading to the low resistance of the black carbon and the increase in the dispersion extent of the Pt particles in the Pt/C catalyst.
Resumo:
Poly(vinyl alcohol) (PVA) nanofibers containing gold nanoparticles have been simply obtained by electrospinning a solution containing gold nanoparticles without the additional step of introducing other stabilizing agents. The optical property of gold nanoparticles in PVA aqueous solution was observed by UV-visible absorption spectra. Morphology of the Au/PVA nanofibers and distribution of the gold nanoparticles were characterized by transmission electron. microscopy (TEM). The structure transformation was characterized from PVA to PVA/Au composite by Fourier transform infrared spectroscopy (FTIR).
Resumo:
The supramolecular self-assembled monolayers (SAMs) of C-60 by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C-60 monoanion. The results indicate that monoanionic C-60 plays a crucial role in the formation of the C-60-containing self-assembled monolayers. The generation of C-60 monoanion and the formation process of C-60 SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C-60 SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C-60 by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C-60. The new C-60 SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C-60 on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C-60 over the thiolated beta-CD SAMs.
Resumo:
The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM- 41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.