922 resultados para GOAL-DIRECTED MOVEMENTS
Resumo:
The main objective is to generate kinematic models for the head and neck movements. The motivation comes from our study of individuals with quadriplegia and the need to design rehabilitation aiding devices such as robots and teletheses that can be controlled by head-neck movements. It is then necessary to develop mathematical models for the head and neck movements. Two identification methods have been applied to study the kinematics of head-neck movements of able-body as well as neck-injured subjects. In particular, sagittal plane movements are well modeled by a planar two-revolute-joint linkage. In fact, the motion in joint space seems to indicate that sagittal plane movements may be classified as a single DOF motion. Finally, a spatial three-revolute-joint system has been employed to model 3D head-neck movements.
Resumo:
In this paper we have explored areas of application for health care manipulators and possible user groups. We have shown the steps in the design approach to the conceptual mechanism from the AAS. The future work will be measurement from properties of the muscle with the elbow parameterization test-bed to get a database to design one part of the control area from the AAS. More work on the mechanical design is required before a functional prototype can be built.
Resumo:
The goal of this study was to examine behavioral and electrophysiological correlates of involuntary orienting toward rapidly presented angry faces in non-anxious, healthy adults using a dot-probe task in conjunction with high-density event-related potentials and a distributed source localization technique. Consistent with previous studies, participants showed hypervigilance toward angry faces, as indexed by facilitated response time for validly cued probes following angry faces and an enhanced P1 component. An opposite pattern was found for happy faces suggesting that attention was directed toward the relatively more threatening stimuli within the visual field (neutral faces). Source localization of the P1 effect for angry faces indicated increased activity within the anterior cingulate cortex, possibly reflecting conflict experienced during invalidly cued trials. No modulation of the early C1 component was found for affect or spatial attention. Furthermore, the face-sensitive N170 was not modulated by emotional expression. Results suggest that the earliest modulation of spatial attention by face stimuli is manifested in the P1 component, and provide insights about mechanisms underlying attentional orienting toward cues of threat and social disapproval.
Resumo:
The synthesis of a range of dinuclear Cu(II) dithiocarbamate (dtc)-based macrocycles and their characterisation are described. By carefully tuning the size of the aromatic spacer, cavities of different dimensions can be designed. The length and flexibility of the chosen spacer group dictates the intermetallic distance and hence the degree of communication between the two metal centres as evidenced by electrochemical and EPR experiments. This is illustrated by crystallographic evidence that show the macrocycles can host guests (such as CH2Cl2) or can fold and form unexpected Cu(I) dtc clusters.
Resumo:
Industrial projects are often complex and burdened with time pressures and a lack of information. The term 'soft-project' used here stands for projects where the ‘what’ and/or the ‘how’ is uncertain, which is often the experience in projects involving software intensive systems developments. This thesis intertwines the disciplines of project management and requirements engineering in a goal-oriented application of the maxim ‘keep all objectives satisfied’. It thus proposes a method for appraising projects. In this method, a goal-oriented analysis establishes a framework with which expert judgements are collected so as to construct a confidence profile in regard to the feasibility and adequacy of the project's planned outputs. It is hoped that this appraisal method will contribute to the activities of project ‘shaping’ and aligning stakeholders’ expectations whilst helping project managers appreciate what parts of their project can be progressed and what parts should be held pending further analysis. This thesis offers the following original contribution: an appreciation of appraisal in the project context; a goal-oriented confidence profiling technique; and: a technique to produce goal-refinement diagrams – referred to as Goal Sketching. Collectively these amount to a method for the ‘Goal Refinement Appraisal of Soft-Projects’ (GRASP). The validity of the GRASP method is shown for two projects. In the first it is used for shaping a business investigation project. This is done in real-time in the project. The second case is a retrospective study of an enterprise IT project. This case tests the effectiveness of forecasting project difficulty from an initial confidence profile.
Resumo:
Two experiments examined imitation of lateralised body movement sequences presented at six viewing angles (0º, 60º, 120º, 180º, 240º, and 300º rotation relative to the participant’s body). Experiment 1 found that, when participants were instructed simply to ‘‘do what the model does’’, at all viewing angles they produced more actions using the same side of the body as the model (anatomical matches), than actions using the opposite side (anatomical non-matches). In Experiment 2 participants were instructed to produce either anatomical matches or anatomical non-matches of observed actions. When the model was viewed from behind (0º), the anatomically matching group were more accurate than the anatomically non-matching group, but the non-matching group was superior when the model faced the participant (180º and 240º). No reliable differences were observed between groups at 60º, 120º, and 300º. In combination, the results of Experiments 1 and 2 suggest that, when they are confronting a model, people choose to imitate the hard way; they attempt to match observed actions anatomically, in spite of the fact that anatomical matching is more subject to error than anatomical non-matching.
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
Understanding human movement is key to improving input devices and interaction techniques. This paper presents a study of mouse movements of motion-impaired users, with an aim to gaining a better understanding of impaired movement. The cursor trajectories of six motion-impaired users and three able-bodied users are studied according to their submovement structure. Several aspects of the movement are studied, including the frequency and duration of pauses between submovements, verification times, the number of submovements, the peak speed of submovements and the accuracy of submovements in two-dimensions. Results include findings that some motion-impaired users pause more often and for longer than able-bodied users, require up to five times more submovements to complete the same task, and exhibit a correlation between error and peak submovement speed that does not exist for able-bodied users.
Resumo:
Remote transient changes in the environment, such as the onset of visual distractors, impact on the exe- cution of target directed saccadic eye movements. Studies that have examined the latency of the saccade response have shown conflicting results. When there was an element of target selection, saccade latency increased as the distance between distractor and target increased. In contrast, when target selection is minimized by restricting the target to appear on one axis position, latency has been found to be slowest when the distractor is shown at fixation and reduces as it moves away from this position, rather than from the target. Here we report four experiments examining saccade latency as target and distractor posi- tions are varied. We find support for both a dependence of saccade latency on distractor distance from target and from fixation: saccade latency was longer when distractor is shown close to fixation and even longer still when shown in an opposite location (180°) to the target. We suggest that this is due to inhib- itory interactions between the distractor, fixation and the target interfering with fixation disengagement and target selection.