932 resultados para GINGIVAL INFLAMMATION
Resumo:
Neutrophils are essential to combat infectious agents but contribute to collateral inflammatory damage. Likewise, neutrophils can kill cancer cells and have been shown to promote malignant growth and metastasis through immunosuppressive functions. Two articles in a recent issue of Nature reveal new mechanisms by which tumors induce changes in neutrophil phenotype through production of inflammatory cytokines. Although the two studies report different outcomes on the effects of neutrophils on tumor growth and metastasis, they delineate novel molecular pathways influencing neutrophil phenotype that may provide new approaches to harnessing neutrophil functions in the treatment of cancer.
Resumo:
OBJECTIVES To assess a selection of host-derived biomarkers in peri-implant sulcus fluid (PISF) and gingival crevicular fluid (GCF) from adjacent teeth 10 years following implant placement. MATERIAL AND METHODS Peri-implant sulcus fluid and GCF samples obtained from the deepest sites of 504 implants and 493 adjacent teeth were analysed for levels of interleukin (IL)-1β, matrix metalloproteinase (MMP)-3, MMP-8, MMP-1, and MMP-1 bound to tissue inhibitor of MMP (TIMP)-1 (MMP-1/TIMP-1) by enzyme-linked immunosorbent assay (ELISA) technique. RESULTS Overall, MMP-8 was detected in 90% of the sites. In more than 50% of the sites, IL-1β was identified while in 30% of the sites MMP-1, MMP-1/TIMP-1 and MMP-3 were found over the detection level. Increased biomarkers levels from PISF and GCF were positively correlated (r = 0.375-0.702; P < 0.001). However, no qualitative and quantitative differences were found between PISF and GCF. The levels of MMP-1 were negatively correlated with those of MMP-1/TIMP-1 at implants (r = -0.644; P < 0.001). Median MMP-1 levels at implants were high (5.17 pg/site) in subjects with severe chronic periodontitis and low in patients with mild-to-moderate chronic periodontitis (0 pg/site; P = 0.026) or gingivitis (0 pg/site; P = 0.034). Levels of IL-1β were found to be different in GCF according to the periodontal conditions (P = 0.001) with the highest level found in mild-to-moderate periodontitis (6.2 pg/site). Clinical attachment levels at implants demonstrated an inverse correlation with MMP-1/TIMP-1 (r = -0.147; P = 0.001). CONCLUSIONS Increased levels of MMP-8 and IL-1β in PISF or GCF may be associated with inflammation around teeth and implants while lower levels of MMP-1/TIMP-1 may be an indicator of disease progression around implants.
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
RATIONALE Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease. Whether there is a causal relationship between these changes and disease progression remains unknown. OBJECTIVE To investigate the link between an altered microbiota and disease, we utilized a model of chronic lung inflammation in specific pathogen free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). METHODS Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage and decline in lung function were quantified. MEASUREMENTS AND MAIN RESULTS Similar to human disease, the composition of the pulmonary microbiota was altered in disease animals. We found that the microbiota richness and diversity were decreased in LPS/Elastase-treated mice, with an increased representation of the genera Pseudomonas, Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted of microbiota exhibited an improvement in lung function, reduction in airway inflammation, decrease in lymphoid neogenesis and auto-reactive antibody responses. The absence of microbial cues also markedly decreased the production of IL-17A, whilst intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. CONCLUSIONS Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.
Resumo:
Neuroinflammation has long been studied for its connection to the development and progression of Multiple Sclerosis. In recent years, the field has expanded to look at the role of inflammatory processes in a wide range of neurological conditions and cognitive disorders including stroke, amyotrophic lateral sclerosis, and autism. Researchers have also started to note the beneficial impacts of neuroinflammation in certain diseases. Neuroinflammation: New Insights into Beneficial and Detrimental Functions provides a comprehensive view of both the detriments and benefits of neuroinflammation in human health. Neuroinflammation: New Insights into Beneficial and Detrimental Functions opens with two chapters that look at some fundamental aspects of neuroinflammation in humans and rodents. The remainder of the book is divided into two sections which examine both the detrimental and beneficial aspects of inflammation on the brain, spinal cord and peripheral nerves, on various disease states, and in normal aging. These sections provide a broad picture of the role neuroinflammation plays in the physiology and pathology of various neurological disorders. Providing cross-disciplinary coverage, Neuroinflammation: New Insights into Beneficial and Detrimental Functions will be an essential volume for neuroimmunologists, neurobiologists, neurologists, and others interested in the field.
Resumo:
Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14.
Resumo:
Background: Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods: In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/− ) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results: In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion: ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.
Resumo:
The cytochrome P450 4F subfamily comprises a group of enzymes that metabolize derivatives of arachidonic acid such as prostaglandins, lipoxins leukotrienes and hydroxyeicosatetraenoic acids, which are important mediators involved in the inflammatory response. Therefore, we speculate that CYP4Fs might be able to modulate the extent of the inflammation by controlling of the tissue levels of these inflammatory mediators, especially, leukotriene B4. One way to provide support for this hypothesis is to test whether the expression of CYP4Fs changes under inflammatory conditions, since these changes are required to adjust the levels of inflammatory mediators. ^ A lipopolysacchride (LPS) induced rat inflammation model was used to analyze the expressions of rat CYP4F4 and CYP4F5 in liver and kidney. LPS administration did not change the constitutive expression level of CYP4F4 and CYP4F5. In liver, the expressions of CYP4F4 and CYP4F5 decreased to 50–60% of the untreated level. The same effect of LPS on CYP4F4 and CYP4F5 expression can be mimicked in hepatocyte primary cultures treated with LPS, indicating a direct of effect of LPS on hepatocytes. LPS treatment also decreased the activity of liver microsomes towards chlorpromazine, however, antibody inhibition study revealed that liver CYP4Fs are not the only players in metabolizing chlorpromazine. To study further the underlying mechanism, CYP4F5 gene was isolated, characterized, and the promoter region was defined. ^ Accumulating evidence showed that peroxisome proliferator-activated receptors (PPARs) play an active role in inflammation. To investigate the possible role of PPARα in regulating CYP4F expression by inflammation or by clofibrate treatment, the expressions of two new mouse 4F isoforms were analyzed in PPARα knockout mice upon LPS or clofibrate challenge. A novel induction of CYP4F15 by LPS and clofibrate was observed in kidney, and this effect is totally dependent on the presence of PPARα. Renal CYP4F16 expression was not affected by LPS or clofibrate in both (+/+) and (−/−) mice. In contrast, hepatic expressions of CYP4F15 and CYP4F16 were reduced significantly in (+/+) mice, but much less in (−/−) mice, suggesting that PPARα is partially responsible for this down-regulation. Clofibrate treatment reduced the expression of CYP4F16 in liver, but has no effect on CYP4F15 and PPARα does not have a role in hepatic CYP4F expression regulated by clofibrate. In general, CYP4Fs are regulated in an isoform-, tissue- and species-specific manner. ^ A human CYP4F isoform, CYP4F11, was isolated. The genomic structure was also solved by using database mining and bioinformatics tools. Localization of CYP4F11 to chromosome 19, 16 kb upstream of CYP4F2, suggests that human CYP4F genes may form a cluster on chromosome 19. This novel human 4F is highly expressed in liver, as well as in kidney, heart and skeletal muscle. Further study of the activity and gene regulation on CYP4F11 will provide us more insights into the physiological functions of CYP4F subfamily. ^
Resumo:
Motility responses of the small intestine of iNOS deficient mice (iNOS −/−) and their wildtype littermates (iNOS+/+) to the inflammatory challenge of lipopolysaccharide (LPS) were investigated. LPS administration failed to attenuate intestinal transit in iNOS−/− mice but depressed transit in their iNOS+/+ littermates. Supporting an inhibitory role for sustained nitric oxide (NO) synthesis in the regulation of intestinal motility during inflammation, iNOS immunoreactivity was upregulated in all regions of the small intestine of iNOS+/+ mice. In contrast, neuronal NOS was barely affected. Cyclooxygenase activation was determined by prostaglandin E2 (PGE2) concentration. Following LPS challenge, PGE2 levels were elevated in all intestinal segments in both animal groups. Moreover, COX-1 and COX-2 protein levels were elevated in iNOS+/+ mice in response to LPS, while COX-2 levels were similarly increased in iNOS −/− intestine. However, no apparent relationship was observed between increased prostaglandin concentrations and attenuated intestinal transit. The presence of heme oxygenase 1 (HO-1) in the murine small intestine was also investigated. In both animal groups HO-1 immunoreactivity in the proximal intestine increased in response to treatment, while the constitutive protein levels detected in the middle and distal intestine were unresponsive to LPS administration. No apparent correlation of HO-1 to the suppression of small intestinal motility induced by LPS administration was detected. The presence of S-nitrosylated contractile proteins in the small intestine was determined. γ-smooth muscle actin was basally nitrosylated as well as in response to LPS, but myosin light chain kinase and myosin regulatory chain (MLC20) were not. In conclusion, in a model of acute intestinal inflammation, iNOS-produced NO plays a significant role in suppressing small intestinal motility while nNOS, COX-1, COX-2 and HO-1 do not participate in this event. S-nitrosylation of γ-smooth muscle actin is associated with elevated levels of nitric oxide in the smooth muscle of murine small intestine. ^
Resumo:
The potential impact of periodontal disease, a suspected risk factor for systemic diseases, presents challenges for health promotion and disease prevention strategies. This study examined clinical, microbiological, and immunological factors in a disease model to identify potential biomarkers that may be useful in predicting the onset and severity of both inflammatory and destructive periodontal disease. This project used an historical cohort design based on data obtained from 47 adult, female nonhuman primates followed over a 6-year period for 5 unique projects where the ligature-induced model of periodontitis was utilized. Standardization of protocols for sample collection allowed for comparison over time. Bleeding and pocket depth measures were selected as the dependent variables of relevance to humans based upon the literature and historical observations. Exposure variables included supragingival plaque, attachment level, total bacteria, black-pigmented bacteria, Gram-negative and Gram-positive bacteria, total IgG and IgA in crevicular fluid, specific IgG antibody in both crevicular fluid and serum, and IgG antibody to four select pathogenic microorganisms. Three approaches were used to analyze the data from this study. The first approach tested for differences in the means of the response variables within the group and among longitudinal observations within the group at each time point. The second approach examined the relationship among the clinical, microbiological, and immunological variables using correlation coefficients and stratified analyses. Multivariable models using GEE for repeated measures were produced as a predictive description of the induction and progression of gingivitis and periodontal disease. The multivariable models for bleeding (gingivitis) include supragingival plaque, total bacteria and total IgG while the second also contains supragingival plaque, Gram-positive bacteria, and total IgG. Two multivariable models emerged for periodontal disease. One multivariable model contains plaque, total bacteria, total IgG and attachment level. The second model includes black-pigmented bacteria, total bacteria, antibody to Campylobacter rectus, and attachment level. Utilization of the nonhuman primate model to prospectively examine causal hypotheses can provide a focus for human research on the mechanisms of progression from health to gingivitis to periodontitis. Ultimately, causal theories can guide strategies to prevent disease initiation and reduce disease severity. ^
Resumo:
CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^
Resumo:
Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition.Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.