966 resultados para Fungi enzymes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylanolytic enzymes produced by Lentinula edodes UFV70, cultivated in eucalyptus sawdust/rice bran medium, were stable at 50, 60 and 65ºC for 21 hours, losing only 15-25% activity. Fungus incubation at 50ºC for 12 hours and at 65ºC for 24 hours increased the amount of xylose produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of Microsporum gypseum was conducted in soil samples in different geographical regions of Brazil. The isolation of dermatophyte from soil samples was performed by hair baiting technique and the species were identified by morphology studies. We analyzed 692 soil samples and the recuperating rate was 19.2%. The activities of keratinase and elastase were quantitatively performed in 138 samples. The sequencing of the ITS region of rDNA was performed in representatives samples. M. gypseum isolates showed significant quantitative differences in the expression of both keratinase and elastase, but no significant correlation was observed between these enzymes. The sequencing of the representative samples revealed the presence of two teleomorphic species of M. gypseum (Arthroderma gypseum and A. incurvatum). The enzymatic activities may play an important role in the pathogenicity and a probable adaptation of this fungus to the animal parasitism. Using the phenotypical and molecular analysis, the Microsporum identification and their teleomorphic states will provide a useful and reliable identification system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rangelia vitalii is a protozoon that causes diseases in dogs, and anemia is the most common laboratory finding. However, few studies on the biochemical changes in dogs infected with this protozoon exist. Thus, this study aimed to investigate the biochemical changes in dogs experimentally infected with R. vitalii, during the acute phase of the infection. For this study, 12 female dogs (aged 6-12 months and weighing between 4 and 7 kg) were used, divided in two groups. Group A was composed of healthy dogs (n = 5); and group B consisted of infected animals (n = 7). Blood samples were collected on days 0, 10, 20 and 30 after infection, using tubes without anticoagulant to obtain serum and analyze the biochemical parameters. An increase in alanine aminotransferase (ALT) on day 20 (P < 0.05) was observed. Also, increased creatine kinase (CK) and aspartate aminotransferase (AST) levels were observed throughout the experimental period (P < 0.05). No changes in the serum gamma-glutamyltransferase, urea and creatinine levels were observed. Thus, is possible to conclude that experimental infection with R. vitalii in dogs causes changes to the biochemical profile, with increased ALT, AST and CK enzyme levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil nut (Bertholletia excelsa) is an important commodity from the Brazilian Amazon, and approximately 37,000 tons (3.36 × 10⁷ kg) of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs, with subsequent production of mycotoxins. In this context, the objective of the present investigation was to evaluate the presence of fungi and mycotoxins (aflatoxins and cyclopiazonic acid) in 110 stored samples of cultivated Brazil nut (55 samples of nuts and 55 samples of shells) collected monthly for 11 months in Itacoatiara, State of Amazonas, Brazil. The samples were inoculated in duplicate onto Aspergillus flavus and Aspergillus parasiticus agar and potato dextrose agar for the detection of fungi, and the presence of mycotoxins was determined by high-performance liquid chromatography. The most prevalent fungi in nuts and shells were Aspergillus spp., Fusarium spp., and Penicillium spp. A polyphasic approach was used for identification of Aspergillus species. Aflatoxins and cyclopiazonic acid were not detected in any of the samples analyzed. The low water activity of the substrate was a determinant factor for the presence of fungi and the absence of aflatoxin in Brazil nut samples. The high frequency of isolation of aflatoxigenic Aspergillus section Flavi strains, mainly A. flavus, and their persistence during storage increase the chances of aflatoxin production on these substrates and indicates the need for good management practices to prevent mycotoxin contamination in Brazil nuts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > −10 °C and the specific conditions under which they can influence cloud glaciation need to be further evaluated so as to understand how evolutionary processes could have positively selected for INA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Departamento de Biología y Geología, Universidad Rey Juan Carlos, Madrid, Spain. Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown rot caused by Monilinia laxa and Monilinia fructigena is considered one of the most important diseases affecting Prunus species. Although some losses can result from the rotten fruits in the orchard, most of the damage is caused to fruits during the post-harvest phase. Several studies reported that brown rot incidence during fruit development highly varies; it was found that at a period corresponding to the the pit hardening stage, fruit susceptibility drastically decreases, to be quickly restored afterwards. However the molecular basis of this phenomenon is still not well understood. Furthermore, no difference in the rot incidence was found between wound and un-wound fruits, suggesting that resistance associated more to a specifc biochemical response of the fruit, rather than to a higher mechanical resistance. So far, the interaction Monilinia-peach was analyzed through chemical approaches. In this study, a bio-molecular approach was undertaken in order to reveal alteration in gene expression associated to the variation of susceptibility. In this thesis three different methods for gene expression analysis were used to analyze the alterations in gene expression occurring in peach fruits during the pit hardening stage, in a period encompassing the temporary change in Monilinia susceptibility: real time PCR, microarray and cDNA AFLP techniques. In 2005, peach fruits (cv.K2) were weekly harvested during a 19-week long-period, starting from the fourth week after full bloom, until full maturity. At each sampling time, three replicates of 5 fruits each were dipped in the M.laxa conidial suspension or in distilled water, as negative control. The fruits were maintained at room temperature for 3 hours; afterwards, they were peeled with a scalpel; the peel was immediately frozen in liquid nitrogen and transferred to -80 °C until use. The degree of susceptibility of peach fruit to the pathogen was determined on 3 replicates of 20 fruits each, as percentage of infected fruits, after one week at 20 °C. Real time PCR analysis was performed to study the variation in expression of those genes encoding for the enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), leucoanthocyanidine reductase (LAR), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and of the jasmonate pathway, such as lipoxygenase (LOX), both involved in the production of important defense compounds. Alteration in gene expression was monitored on fruit samples of a period encompassing the pit hardening stage and the corresponding temporary resistance to M.laxa infections, weekly, from the 6thto the 12th week after full bloom (AFB) inoculated with M. laxa or mock-inoculated. The data suggest a critical change in the expression level of the phenylpropanoid pathway from the 7th to the 8th week AFB; such change could be directly physiologically associated to the peach growth and it could indirectly determine the decrease of susceptibility of peach fruit to Monilinia rot during the subsequent weeks. To investigate on the transcriptome variation underneath the temporary loss of susceptibility of peach fruits to Monilinia rot, the microarray and the cDNA AFLP techniques were used. The samples harvested on the 8th week AFB (named S, for susceptible ones) and on the 12th week AFB (named R, for resistant ones) were compared, both inoculated or mock-inoculated. The microarray experiments were carried out at the University of Padua (Dept. of Environmental Agronomy and Crop Science), using the μPEACH1.0 microarray together with the suited protocols. The analysis showed that 30 genes (corresponding to the 0.6% of the total sequences (4806) contained in the μPeach1.0 microarray) were found up-regulated and 31 ( 0.6%) down regulated in RH vs. SH fruits. On the other hand, 20 genes (0.4%) were shown to be up-regulated and 13 (0.3%) down-regulated in the RI vs. SI fruit. No genes were found differentially expressed in the mock-inoculated resistant fruits (RH) vs. the inoculated resistant ones (RI). Among the up-regulated genes an ATP sulfurylase, an heat shock protein 70, the major allergen Pru P1, an harpin inducing protein and S-adenosylmethionine decarboxylase were found, conversely among the down-regulated ones, cinnamyl alcohol dehydrogenase, an histidine- containing phosphotransfer protein and the ferritin were found. The microarray experimental results and the data indirectly derived, were tested by Real Time PCR analysis. cDNA AFLP analysis was also performed on the same samples. 339 transcript derived fragments considered significant for Monilinia resistance, were selected, sequenced and classified. Genes potentially involved in cell rescue and defence were well represented (8%); several genes (12.1%) involved in the protein folding, post-transductional modification and genes (9.2%) involved in cellular transport were also found. A further 10.3% of genes were classified as involved in the metabolism of aminoacid, carbohydrate and fatty acid. On the other hand, genes involved in the protein synthesis (5.7%) and in signal transduction and communication (5.7%) were found. Among the most interesting genes found differentially expressed between susceptible and resistant fruits, genes encoding for pathogenesis related (PR) proteins were found. To investigate on the association of Monilinia resistance and PR biological function, the major allergen Pru P1 (GenBank accession AM493970) and its isoform (here named Pru P2), were expressed in heterologous system and in vitro assayed for their anti-microbial activity. The ribonuclease activity of the recombinant Pru P1 and Pru P2 proteins was assayed against peach total RNA. As the other PR10 proteins, they showed a ribonucleolytic activity, that could be important to contrast pathogen penetration. Moreover Pru P1 and Pru P2 recombinant proteins were checked for direct antimicrobial activity. No inhibitory effect of Pru P1 or Pru P2 was detected against the selected fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the possible pathways and the mechanisms that can trigger oxylipins biosynthesis, and particularly that of short chain aldehydes and alcohols, in Lactobacillus helveticus, also in the presence of oxidative stress, using a totally labelled linoleic acid as precursor. In plants and fungi these molecules, involved in defence mechanisms against pathogens and in communication systems, derive from the oxidation of cellular unsaturated fatty acids (UFAs) and their accumulation is associated with stress exposure. Since some oxylipins are produced also by lactobacilli, it is possible to hypothesize that a metabolic pathway from UFAs to oxylipins, similar to what happens in plants and fungi, is present also in lactic acid bacteria. The results obtained pointed out that some volatile molecules are the result of UFAs catabolism, since they appear only when cells are incubated in their presence. Labelled linoleic acid is integrated in the membrane and subsequently transformed into aldehydes and alcohols, whose extent and carbon atoms number depend on stress exposure. The enzymes responsible for this metabolic pathway in plants and fungi (e.g. lipoxygenase, dioxygenase) seem to be absent in Lactobacillus helveticus and in other lactobacilli. Proteomic analyses show the over expression of many proteins, including thioredoxin reductase (part of the bacterial oxidative defence system), mainly in cells grown with linoleic acid without oxidative stress exposure, confirming that linoleic acid itself induces oxidative stress. 6 general oxidoreductases (class including dioxygenases and peroxidase) were found and therefore a deeper investigation on them could be productive in elucidating all steps involved in oxylipins biosynthesis in bacteria. Due to the multiple role of oxylipins (flavouring agents, antimicrobial compounds and interspecific signalling molecules) the identification of genes involved and regulating factors should have an important biotechnological impact, also allowing the overproduction of selected bioactive molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La demolizione idrolitica delle pareti cellulari delle piante tramite enzimi lignocellulosici è quindi uno degli approcci più studiati della valorizzazione di scarti agricoli per il recupero di fitochimici di valore come secondary chemical building block per la chimica industriale. White rot fungi come il Pleurotus ostreatus producono una vasta gamma di enzimi extracellulari che degradano substrati lignocellulosici complessi in sostanze solubili per essere utilizzati come nutrienti. In questo lavoro abbiamo studiato la produzione di diversi tipi di enzimi lignocellulosici quali cellulase, xilanase, pectinase, laccase, perossidase e arylesterase (caffeoilesterase e feruloilesterase), indotte dalla crescita di Pleurotus ostreatus in fermentazione allo stato solido (SSF) di sottoprodotti agroalimentari (graspi d’uva, vinaccioli, lolla di riso, paglia di grano e crusca di grano) come substrati. Negli ultimi anni, SSF ha ricevuto sempre più interesse da parte dei ricercatori, dal momento che diversi studi per produzioni di enzimi, aromi, coloranti e altre sostanze di interesse per l' industria alimentare hanno dimostrato che SSF può dare rendimenti più elevati o migliorare le caratteristiche del prodotto rispetto alla fermentazione sommersa. L’utilizzo dei sottoprodotti agroalimentari come substrati nei processi SSF, fornisce una via alternativa e di valore, alternativa a questi residui altrimenti sotto/o non utilizzati. L'efficienza del processo di fermentazione è stato ulteriormente studiato attraverso trattamenti meccanici di estrusione del substrato , in grado di promuovere il recupero dell’enzima e di aumentare l'attività prodotta. Le attività enzimatiche prodotte dalla fermentazione sono strettamente dipendente della rimozione periodica degli enzimi prodotti. Le diverse matrici vegetali utilizzate hanno presentato diversi fenomeni induttivi delle specifiche attività enzimatiche. I processi SSF hanno dimostrato una buona capacità di produrre enzimi extracellulari in grado di essere utilizzati successivamente nei processi idrolitici di bioraffinazione per la valorizzazione dei prodotti agroalimentari.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an anesthetic drug for short term surgical interventions and in subanesthetic doses for postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. Enantioselective capillary electrophoresis with multiple isomer sulfated -cyclodextrin as chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine and subsequently the biotransformation of norketamine to other metabolites were studied via analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic norketamine with nine recombinantly expressed human cytochrome P450 enzymes and human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the only enzymes which enable the hydroxylation of norketamine. The latter two enzymes produced metabolic patterns similar to those found in incubations with human liver microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were best described with the Michaelis-Menten model and the Hill equation, respectively. This is the first study elucidating the individual enzymes responsible for hydroxylation of norketamine. The obtained data suggest that in vitro biotransformation of ketamine and norketamine is stereoselective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine how changes in lipids, liver enzymes, and inflammatory and glycemia markers intercorrelate during prolonged dietary intervention in obese participants with or without type 2 diabetes (T2D).