920 resultados para French as a second language


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consequence analysis is a key aspect of anchoring assessment of landslide impacts to present and long-term development planning. Although several approaches have been developed over the last decade, some of them are difficult to apply in practice, mainly because of the lack of valuable data on historical damages or on damage functions. In this paper, two possible consequence indicators based on a combination of descriptors of the exposure of the elements at risk are proposed in order to map the potential impacts of landslides and highlight the most vulnerable areas. The first index maps the physical vulnerability due to landslide; the second index maps both direct damage (physical, structural, functional) and indirect damage (socio-economic impacts) of landslide hazards. The indexes have been computed for the 200 km2 area of the Barcelonnette Basin (South French Alps), and their potential applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The orthographic depth hypothesis (Katz and Feldman, 1983) posits that different reading routes are engaged depending on the type of grapheme/phoneme correspondence of the language being read. Shallow orthographies with consistent grapheme/phoneme correspondences favor encoding via non-lexical pathways, where each grapheme is sequentially mapped to its corresponding phoneme. In contrast, deep orthographies with inconsistent grapheme/phoneme correspondences favor lexical pathways, where phonemes are retrieved from specialized memory structures. This hypothesis, however, lacks compelling empirical support. The aim of the present study was to investigate the impact of orthographic depth on reading route selection using a within-subject design. METHOD We presented the same pseudowords (PWs) to highly proficient bilinguals and manipulated the orthographic depth of PW reading by embedding them among two separated German or French language contexts, implicating respectively, shallow or deep orthography. High density electroencephalography was recorded during the task. RESULTS The topography of the ERPs to identical PWs differed 300-360 ms post-stimulus onset when the PWs were read in different orthographic depth context, indicating distinct brain networks engaged in reading during this time window. The brain sources underlying these topographic effects were located within left inferior frontal (German > French), parietal (French > German) and cingular areas (German > French). CONCLUSION Reading in a shallow context favors non-lexical pathways, reflected in a stronger engagement of frontal phonological areas in the shallow versus the deep orthographic context. In contrast, reading PW in a deep orthographic context recruits less routine non-lexical pathways, reflected in a stronger engagement of visuo-attentional parietal areas in the deep versus shallow orthographic context. These collective results support a modulation of reading route by orthographic depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Converging evidences from eye movement experiments indicate that linguistic contexts influence reading strategies. However, the question of whether different linguistic contexts modulate eye movements during reading in the same bilingual individuals remains unresolved. We examined reading strategies in a transparent (German) and an opaque (French) language of early, highly proficient French–German bilinguals: participants read aloud isolated French and German words and pseudo-words while the First Fixation Location (FFL), its duration and latency were measured. Since transparent linguistic contexts and pseudo-words would favour a direct grapheme/phoneme conversion, the reading strategy should be more local for German than for French words (FFL closer to the beginning) and no difference is expected in pseudo-words’ FFL between contexts. Our results confirm these hypotheses, providing the first evidence that the same individuals engage different reading strategy depending on language opacity, suggesting that a given brain process can be modulated by a given context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discourse connectives are often said to be language specific, and therefore not easily paired with a translation equivalent in a target language. However, few studies have assessed the magnitude and the causes of these divergences. In this paper, we provide an overview of the similarities and discrepancies between causal connectives in two typologically related languages: English and French. We first discuss two criteria used in the literature to account for these differences: the notion of domains of use and the information status of the cause segment. We then test the validity of these criteria through an empirical contrastive study of causal connectives in English and French, performed on a bidirectional corpus. Our results indicate that French and English connectives have only partially overlapping profiles and that translation equivalents are adequately predicted by these two criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the present thesis was to investigate the production of code-switched utterances in bilinguals’ speech production. This study investigates the availability of grammatical-category information during bilingual language processing. The specific aim is to examine the processes involved in the production of Persian-English bilingual compound verbs (BCVs). A bilingual compound verb is formed when the nominal constituent of a compound verb is replaced by an item from the other language. In the present cases of BCVs the nominal constituents are replaced by a verb from the other language. The main question addressed is how a lexical element corresponding to a verb node can be placed in a slot that corresponds to a noun lemma. This study also investigates how the production of BCVs might be captured within a model of BCVs and how such a model may be integrated within incremental network models of speech production. In the present study, both naturalistic and experimental data were used to investigate the processes involved in the production of BCVs. In the first part of the present study, I collected 2298 minutes of a popular Iranian TV program and found 962 code-switched utterances. In 83 (8%) of the switched cases, insertions occurred within the Persian compound verb structure, hence, resulting in BCVs. As to the second part of my work, a picture-word interference experiment was conducted. This study addressed whether in the case of the production of Persian-English BCVs, English verbs compete with the corresponding Persian compound verbs as a whole, or whether English verbs compete with the nominal constituents of Persian compound verbs only. Persian-English bilinguals named pictures depicting actions in 4 conditions in Persian (L1). In condition 1, participants named pictures of action using the whole Persian compound verb in the context of its English equivalent distractor verb. In condition 2, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically closely related English distractor verb. In condition 3, the whole Persian compound verb was produced in the context of a semantically unrelated English distractor verb. In condition 4, only the nominal constituent was produced in the presence of the light verb of the target Persian compound verb and in the context of a semantically unrelated English distractor verb. The main effect of linguistic unit was significant by participants and items. Naming latencies were longer in the nominal linguistic unit compared to the compound verb (CV) linguistic unit. That is, participants were slower to produce the nominal constituent of compound verbs in the context of a semantically closely related English distractor verb compared to producing the whole compound verbs in the context of a semantically closely related English distractor verb. The three-way interaction between version of the experiment (CV and nominal versions), linguistic unit (nominal and CV linguistic units), and relation (semantically related and unrelated distractor words) was significant by participants. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to the response latencies in the semantically related CV linguistic unit. In both versions, naming latencies were longer in the semantically related nominal linguistic unit compared to response latencies in the semantically unrelated nominal linguistic unit. Both the analysis of the naturalistic data and the results of the experiment revealed that in the case of the production of the nominal constituent of BCVs, a verb from the other language may compete with a noun from the base language, suggesting that grammatical category does not necessarily provide a constraint on lexical access during the production of the nominal constituent of BCVs. There was a minimal context in condition 2 (the nominal linguistic unit) in which the nominal constituent was produced in the presence of its corresponding light verb. The results suggest that generating words within a context may not guarantee that the effect of grammatical class becomes available. A model is proposed in order to characterize the processes involved in the production of BCVs. Implications for models of bilingual language production are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focused on the relationship between students’ Advanced Placement (AP) English language performance and their subsequent college success. Targeted students were divided into three groups according to their AP English Language performance. Subsequent college success was measured by students’ first-year college GPA, retention to the second year, and institutional selectivity. The demographic characteristics of the three AP performance groups with regard to gender, ethnicity, and best language spoken are provided. Results indicated that, after controlling for students’ SAT scores as a measure of prior academic performance, AP English Language performance was positively related to all three measures of college success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Como resultado de nuestra experiencia docente en la Facultad de Humanidades y Ciencias de la Educación de la UNLP impartiendo cursos de lectocomprensión en Lengua extranjera (LE) y con el objetivo siempre presente de mejorar las prácticas didácticas para lograr el resultado esperado del lector autónomo en Francés, decidimos encarar el presente trabajo de investigación. La hipótesis de partida de nuestro análisis es que la verificación de la comprensión lectora en LE podría hacerse a partir de resúmenes en Lengua Materna (LM), y que habría una estrecha relación entre las estrategias lectoras utilizadas en LM y las que se utilizan en LE. A partir de esto nos planteamos una serie de preguntas organizadas alrededor de tres ejes según los componentes a los que apuntan: cognitivo, metodológico-estratégico y discursivo. Tomamos como base un corpus de resúmenes en LM de un texto en LE realizado por un grupo voluntario de alumnos de la Cátedra Capacitación en Idioma Francés I, creando con ellos un dispositivo de observación y análisis conjunto compuesto por: una Encuesta Previa al comienzo del curso con respuestas en LM, una Encuesta previa a la lectura del texto por resumir con respuestas en LM, y una Encuesta post resumen con respuestas en LM. El trabajo está estructurado en seis partes: Introducción, Problemática, Marco teórico, Metodología de recolección de datos, Análisis del corpus y Conclusiones y perspectivas. Creemos que el presente trabajo constituye una reflexión y un punto de partida para el análisis de uno de los problemas planteados por la didáctica de la lectocomprensión LE en la universidad: las estrategias lectoras de los estudiantes de LE y más particularmente en Francés Lengua Extranjera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Como resultado de nuestra experiencia docente en la Facultad de Humanidades y Ciencias de la Educación de la UNLP impartiendo cursos de lectocomprensión en Lengua extranjera (LE) y con el objetivo siempre presente de mejorar las prácticas didácticas para lograr el resultado esperado del lector autónomo en Francés, decidimos encarar el presente trabajo de investigación. La hipótesis de partida de nuestro análisis es que la verificación de la comprensión lectora en LE podría hacerse a partir de resúmenes en Lengua Materna (LM), y que habría una estrecha relación entre las estrategias lectoras utilizadas en LM y las que se utilizan en LE. A partir de esto nos planteamos una serie de preguntas organizadas alrededor de tres ejes según los componentes a los que apuntan: cognitivo, metodológico-estratégico y discursivo. Tomamos como base un corpus de resúmenes en LM de un texto en LE realizado por un grupo voluntario de alumnos de la Cátedra Capacitación en Idioma Francés I, creando con ellos un dispositivo de observación y análisis conjunto compuesto por: una Encuesta Previa al comienzo del curso con respuestas en LM, una Encuesta previa a la lectura del texto por resumir con respuestas en LM, y una Encuesta post resumen con respuestas en LM. El trabajo está estructurado en seis partes: Introducción, Problemática, Marco teórico, Metodología de recolección de datos, Análisis del corpus y Conclusiones y perspectivas. Creemos que el presente trabajo constituye una reflexión y un punto de partida para el análisis de uno de los problemas planteados por la didáctica de la lectocomprensión LE en la universidad: las estrategias lectoras de los estudiantes de LE y más particularmente en Francés Lengua Extranjera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Como resultado de nuestra experiencia docente en la Facultad de Humanidades y Ciencias de la Educación de la UNLP impartiendo cursos de lectocomprensión en Lengua extranjera (LE) y con el objetivo siempre presente de mejorar las prácticas didácticas para lograr el resultado esperado del lector autónomo en Francés, decidimos encarar el presente trabajo de investigación. La hipótesis de partida de nuestro análisis es que la verificación de la comprensión lectora en LE podría hacerse a partir de resúmenes en Lengua Materna (LM), y que habría una estrecha relación entre las estrategias lectoras utilizadas en LM y las que se utilizan en LE. A partir de esto nos planteamos una serie de preguntas organizadas alrededor de tres ejes según los componentes a los que apuntan: cognitivo, metodológico-estratégico y discursivo. Tomamos como base un corpus de resúmenes en LM de un texto en LE realizado por un grupo voluntario de alumnos de la Cátedra Capacitación en Idioma Francés I, creando con ellos un dispositivo de observación y análisis conjunto compuesto por: una Encuesta Previa al comienzo del curso con respuestas en LM, una Encuesta previa a la lectura del texto por resumir con respuestas en LM, y una Encuesta post resumen con respuestas en LM. El trabajo está estructurado en seis partes: Introducción, Problemática, Marco teórico, Metodología de recolección de datos, Análisis del corpus y Conclusiones y perspectivas. Creemos que el presente trabajo constituye una reflexión y un punto de partida para el análisis de uno de los problemas planteados por la didáctica de la lectocomprensión LE en la universidad: las estrategias lectoras de los estudiantes de LE y más particularmente en Francés Lengua Extranjera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).