946 resultados para Fos immunoreactivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuroendocrine protein 7B2 contains two domains, a 21-kDa protein required for prohormone convertase 2 (PC2) maturation and a carboxyl-terminal (CT) peptide that inhibits PC2 at nanomolar concentrations. To determine how the inhibition of PC2 is terminated, we studied the metabolic fate of the 7B2 CT peptide in RinPE-7B2, AtT-20/PC2-7B2, and alphaTC1-6 cells. Extracts obtained from cells labeled for 6 h with [3H]valine were subjected to immunoprecipitation using an antibody raised against the extreme carboxyl terminus of r7B2, and immunoprecipitated peptides were separated by gel filtration. All three cell lines yielded two distinct peaks at about 3.5 kDa and 1.5 kDa, corresponding to the CT peptide and a smaller fragment consistent with cleavage at an interior Lys-Lys site. These results were corroborated using a newly developed RIA against the carboxyl terminus of the CT peptide which showed that the intact CT peptide represented only about half of the stored CT peptide immunoreactivity, with the remainder present as the 1.5-kDa peptide. Both peptides could be released upon phorbol 12-myristate 13-acetate stimulation. We investigated the possibility that PC2 itself could be responsible for this cleavage by performing in vitro experiments. When 125I-labeled CT peptide was incubated with purified recombinant PC2, a smaller peptide was generated. Analysis of CT peptide derivatives for their inhibitory potency revealed that CT peptide 1-18 (containing Lys-Lys at the carboxyl terminus) represented a potent inhibitor, but that peptide 1-16 was inactive. Inclusion of carboxypeptidase E (CPE) in the reaction greatly diminished the inhibitory potency of the CT peptide against PC2, in line with the notion that the CT peptide cleavage product is not inhibitory after the removal of terminal lysines by CPE. In summary, our data support the idea that PC2 cleaves the 7B2 CT peptide at its internal Lys-Lys site within secretory granules; deactivation of the cleavage product is then accomplished by CPE, thus providing an efficient mechanism for intracellular inactivation of the CT peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the human Cu,Zn superoxide dismutase gene (SOD1) are found in 20% of kindreds with familial amyotrophic lateral sclerosis. Transgenic mice (line G1H) expressing a human SOD1 containing a mutation of Gly-93 --> Ala (G93A) develop a motor neuron disease similar to familial amyotrophic lateral sclerosis, but transgenic mice (line N1029) expressing a wild-type human SOD1 transgene do not. Because neurofilament (NF)-rich inclusions in spinal motor neurons are characteristic of amyotrophic lateral sclerosis, we asked whether mutant G1H and/or N1029 mice develop similar NF lesions. NF inclusions (i.e., spheroids, Lewy body-like inclusions) were first detected in spinal cord motor neurons of the G1H mice at 82 days of age about the time these mice first showed clinical evidence of disease. Other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulated in these spheroids. The onset of accumulations of ubiquitin immunoreactivity in the G1H mice paralleled the emergence of vacuoles and NF-rich spheroids in neurons, but they did not colocalize exclusively with spheroids. In contrast, NF inclusions were not seen in the N1029 mice until they were 132 days old, and ubiquitin immunoreactivity was not increased in the N1029 mice even at 199 days of age. Astrocytosis in spinal cord was associated with a marked increase in glial fibrillary acidic protein immunoreactivity in the G1H mice, but not in the N1029 mice. Finally, comparative studies revealed a striking similarity between the cytoskeletal pathology in the G1H transgenic mice and in patients with amyotrophic lateral sclerosis. These findings link a specific SOD1 mutation with alterations in the neuronal cytoskeleton of patients with amyotrophic lateral sclerosis. Thus, neuronal cytoskeletal abnormalities may be implicated in the pathogenesis of human familial amyotrophic lateral sclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postnatal development and adult function of the central nervous system are dependent on the capacity of neurons to effect long-term changes of specific properties in response to neural activity. This neuronal response has been demonstrated to be tightly correlated with the expression of a set of regulatory genes which include transcription factors as well as molecules that can directly modify cellular signaling. It is hypothesized that these proteins play a role in activity-dependent response. Previously, we described the expression and regulation in brain of an inducible form of prostaglandin synthase/cyclooxygenase, termed COX-2. COX-2 is a rate-limiting enzyme in prostanoid synthesis and its expression is rapidly regulated in developing and adult forebrain by physiological synaptic activity. Here we demonstrate that COX-2 immunoreactivity is selectively expressed in a subpopulation of excitatory neurons in neo-and allocortices, hippocampus, and amygdala and is compartmentalized to dendritic arborizations. Moreover, COX-2 immunoreactivity is present in dendritic spines, which are specialized structures involved in synaptic signaling. The developmental profile of COX-2 expression in dendrites follows well known histogenetic gradients and coincides with the critical period for activity-dependent synaptic remodeling. These results suggest that COX-2, and its diffusible prostanoid products, may play a role in postsynaptic signaling of excitatory neurons in cortex and associated structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intermittent electrical footshock induces c-fos expression in parvocellular neurosecretory neurons expressing corticotropin-releasing factor and in other visceromotor cell types of the paraventricular hypothalamic nucleus (PVH). Since catecholaminergic neurons of the nucleus of the solitary tract and ventrolateral medulla make up the dominant loci of footshock-responsive cells that project to the PVH, these were evaluated as candidate afferent mediators of hypothalamic neuroendocrine responses. Rats bearing discrete unilateral transections of this projection system were exposed to a single 30-min footshock session and sacrificed 2 hr later. Despite depletion of the aminergic innervation on the ipsilateral side, shock-induced up-regulation of Fos protein and corticotropin-releasing factor mRNA were comparable in strength and distribution in the PVH on both sides of the brain. This lesion did, however, result in a substantial reduction of Fos expression in medullary aminergic neurons on the ipsilateral side. These results contrast diametrically with those obtained in a systemic cytokine (interleukin 1) challenge paradigm, where similar cuts ablated the Fos response in the ipsilateral PVH but left intact the induction seen in the ipsilateral medulla. We conclude that (i) footshock-induced activation of medullary aminergic neurons is a secondary consequence of stress, mediated via a descending projection transected by our ablation, (ii) stress-induced activation of medullary aminergic neurons is not necessarily predictive of an involvement of these cell groups in driving hypothalamic visceromotor responses to a given stressor, and (iii) despite striking similarities in the complement of hypothalamic effector neurons and their afferents that may be activated by stresses of different types, distinct mechanisms may underlie adaptive hypothalamic responses in each.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 micromol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genome of the pufferfish (Fugu rubripes) (400 Mb) is approximately 7.5 times smaller than the human genome, but it has a similar gene repertoire to that of man. If regions of the two genomes exhibited conservation of gene order (i.e., were syntenic), it should be possible to reduce dramatically the effort required for identification of candidate genes in human disease loci by sequencing syntenic regions of the compact Fugu genome. We have demonstrated that three genes (dihydrolipoamide succinyltransferase, S31iii125, and S20i15), which are linked to FOS in the familial Alzheimer disease focus (AD3) on human chromosome 14, have homologues in the Fugu genome adjacent to Fugu cFOS. The relative gene order of cFOS, S31iii125, and S20i15 was the same in both genomes, but in Fugu these three genes lay within a 12.4-kb region, compared to >600 kb in the human AD3 locus. These results demonstrate the conservation of synteny between the genomes of Fugu and man and highlight the utility of this approach for sequence-based identification of genes in human disease loci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several enzymes involved in the formation of steroids of the pregnene and pregnane series have been identified in the brain, but the biosynthesis of testosterone has never been reported in the central nervous system. In the present study, we have investigated the distribution and bioactivity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) (EC 1.1.1.62; a key enzyme that is required for the formation of testosterone and estradiol) in the brain of the male frog Rana ridibunda. By using an antiserum against human type I placental 17beta-HSD, immunoreactivity was localized in a discrete group of ependymal glial cells bordering the telencephalic ventricles. HPLC analysis of telencephalon and hypothalamus extracts combined with testosterone radioimmunoassay revealed the existence of two peaks coeluting with testosterone and 5alpha-dihydrotestosterone. After HPLC purification, testosterone was identified by gas chromatography/mass spectrometry. Incubation of telencephalon slices with [3H]pregnenolone resulted in the formation of metabolites which coeluted with progesterone, 17alpha-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, testosterone, and 5alpha-dihydrotestosterone. The newly synthesized steroid comigrating with testosterone was selectively immunodetected by using testosterone antibodies. These data indicate that 17beta-HSD is expressed in a subpopulation of gliocytes in the frog telencephalon and that telencephalic cells are capable of synthesizing various androgens, including dehydroepiandrosterone, androstenedione, testosterone, and 5alpha-dihydrotestosterone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High levels of the p53 protein are immunohistochemically detectable in a majority of human nonmelanoma skin cancers and UVB-induced murine skin tumors. These increased protein levels are often associated with mutations in the conserved domains of the p53 gene. To investigate the timing of the p53 alterations in the process of UVB carcinogenesis, we used a well defined murine model (SKH:HR1 hairless mice) in which the time that tumors appear is predictable from the UVB exposures. The mice were subjected to a series of daily UVB exposures, either for 17 days or for 30 days, which would cause skin tumors to appear around 80 or 30 weeks, respectively. In the epidermis of these mice, we detected clusters of cells showing a strong immunostaining of the p53 protein, as measured with the CM-5 polyclonal antiserum. This cannot be explained by transient accumulation of the normal p53 protein as a physiological response to UVB-induced DNA damage. In single exposure experiments the observed transient CM-5 immunoreactivity lasted for only 3 days and was not clustered, whereas these clusters were still detectable as long as 56 days after 17 days of UVB exposure. In addition, approximately 70% of these patches reacted with the mutant-specific monoclonal antibody PAb240, whereas transiently induced p53-positive cells did not. In line with indicative human data, these experimental results in the hairless mouse model unambiguously demonstrate that constitutive p53 alterations are causally related to chronic UVB exposure and that they are a very early event in the induction of skin cancer by UVB radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indirect immunofluorescence methods using a mouse monoclonal antibody raised to rat choline acetyltransferase (ChAT) revealed dense networks of ChAT-immunoreactive fibers in the superior cervical ganglion, the stellate ganglion, and the celiac superior mesenteric ganglion of the rat. Numerous and single ChAT-immunoreactive cell bodies were observed in the stellate and superior cervical ganglia, respectively. The majority of ChAT-immunoreactive fibers in the stellate and superior cervical ganglia were nitric oxide synthase (NOS) positive. Some ChAT-immunoreactive fibers contained enkephalin-like immunoreactivity. Virtually all ChAT-positive cell bodies in the stellate ganglion were vasoactive intestinal polypeptide (VIP)-positive, and some were calcitonin gene-related peptide (CGRP)-positive. After transection of the cervical sympathetic trunk almost all ChAT- and NOS-positive fibers and most enkephalin- and CGRP-positive fibers disappeared in the superior cervical ganglion. The results suggest that most preganglionic fibers are cholinergic and that the majority of these in addition can release nitric oxide, some enkephalin, and a few CGRP. Acetylcholine, VIP, and CGRP are coexisting messenger molecules in some postganglionic sympathetic neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degeneration of nigral dopaminergic neurons in Parkinson disease is believed to be associated with oxidative stress. Since iron levels are increased in the substantia nigra of parkinsonian patients and this metal catalyzes the formation of free radicals, it may be involved in the mechanisms of nerve cell death. The cause of nigral iron increase is not understood. Iron acquisition by neurons may occur from iron-transferrin complexes with a direct interaction with specific membrane receptors, but recent results have shown a low density of transferrin receptors in the substantia nigra. To investigate whether neuronal death in Parkinson disease may be associated with changes in a pathway supplementary to that of transferrin, lactoferrin (lactotransferrin) receptor expression was studied in the mesencephalon. In this report we present evidence from immunohistochemical staining of postmortem human brain tissue that lactoferrin receptors are localized on neurons (perikarya, dendrites, axons), cerebral microvasculature, and, in some cases, glial cells. In parkinsonian patients, lactoferrin receptor immunoreactivity on neurons and microvessels was increased and more pronounced in those regions of the mesencephalon where the loss of dopaminergic neurons is severe. Moreover, in the substantia nigra, the intensity of immunoreactivity on neurons and microvessels was higher for patients with higher nigral dopaminergic loss. These data suggest that lactoferrin receptors on vulnerable neurons may increase intraneuronal iron levels and contribute to the degeneration of nigral dopaminergic neurons in Parkinson disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.