970 resultados para Flow analysis
Resumo:
Diese Arbeit beschäftigt sich mit nicht in Rechnung stellbaren Wasserverlusten in städtischen Versorgungsnetzen in Entwicklungsländern. Es soll das Wissen über diese Verluste erweitert und aufgezeigt werden, ob diese auf ein ökonomisch vertretbares Maß reduziert werden können. Die vorliegende Doktorarbeit untersucht solche unberechneten Wasserverluste und versucht, neben der Quantifizierung von Leckagen auch Entscheidungswerkzeuge für ein verbessertes Management der Versorgungsnetze in Entwicklungsländern zu erarbeiten. Als Fallstudie dient Harare, die Hauptstadt von Simbabwe. Wasserverluste in Verteilungsnetzen sind unvermeidbar, sollten aber auf ein ökonomisch tragbares Niveau reduziert werden, wenn ein nachhaltiger Betrieb erreicht werden soll. Wasserverluste können sowohl durch illegale und ungenehmigte Anschlüsse oder durch Undichtigkeiten im Verteilnetz, als auch durch mangelhafte Mess- und Berechnungssysteme entstehen. Es sind bereits viele Ansätze zur Verringerung von Verlusten in Wasserverteilsystemen bekannt geworden, entsprechend existieren dazu auch zahlreiche Methoden und Werkzeuge. Diese reichen von computergestützten Verfahren über gesetzliche und politische Vorgaben sowie ökonomische Berechnungen bis hin zu Maßnahmen der Modernisierung der Infrastruktur. Der Erfolg dieser Anstrengungen ist abhängig von der Umsetzbarkeit und dem Umfeld, in dem diese Maßnahmen durchgeführt werden. Die Bewertung der Arbeitsgüte einer jeden Wasserversorgungseinheit basiert auf der Effektivität des jeweiligen Verteilungssystems. Leistungs- und Bewertungszahlen sind die meist genutzten Ansätze, um Wasserverteilsysteme und ihre Effizienz einzustufen. Weltweit haben sich zur Bewertung als Indikatoren die finanzielle und die technische Leistungsfähigkeit durchgesetzt. Die eigene Untersuchung zeigt, dass diese Indikatoren in vielen Wasserversorgungssystemen der Entwicklungsländer nicht zur Einführung von Verlust reduzierenden Managementstrategien geführt haben. Viele durchgeführte Studien über die Einführung von Maßnahmen zur Verlustreduzierung beachten nur das gesamte nicht in Rechnung stellbare Wasser, ohne aber den Anteil der Leckagen an der Gesamthöhe zu bestimmen. Damit ist keine Aussage über die tatsächliche Zuordnung der Verluste möglich. Aus diesem Grund ist ein Bewertungsinstrument notwendig, mit dem die Verluste den verschiedenen Ursachen zugeordnet werden können. Ein solches Rechenwerkzeug ist das South African Night Flow Analysis Model (SANFLOW) der südafrikanischen Wasser-Forschungskommission, das Untersuchungen von Wasserdurchfluss und Anlagendruck in einzelnen Verteilbezirken ermöglicht. In der vorliegenden Arbeit konnte nachgewiesen werden, dass das SANFLOW-Modell gut zur Bestimmung des Leckageanteiles verwendet werden kann. Daraus kann gefolgert werden, dass dieses Modell ein geeignetes und gut anpassbares Analysewerkzeug für Entwicklungsländer ist. Solche computergestützte Berechnungsansätze können zur Bestimmung von Leckagen in Wasserverteilungsnetzen eingesetzt werden. Eine weitere Möglichkeit ist der Einsatz von Künstlichen Neuronalen Netzen (Artificial Neural Network – ANN), die trainiert und dann zur Vorhersage der dynamischen Verhältnisse in Wasserversorgungssystemen genutzt werden können. Diese Werte können mit der Wassernachfrage eines definierten Bezirks verglichen werden. Zur Untersuchung wurde ein Mehrschichtiges Künstliches Neuronales Netz mit Fehlerrückführung zur Modellierung des Wasserflusses in einem überwachten Abschnitt eingesetzt. Zur Bestimmung des Wasserbedarfes wurde ein MATLAB Algorithmus entwickelt. Aus der Differenz der aktuellen und des simulierten Wassernachfrage konnte die Leckagerate des Wasserversorgungssystems ermittelt werden. Es konnte gezeigt werden, dass mit dem angelernten Neuronalen Netzwerk eine Vorhersage des Wasserflusses mit einer Genauigkeit von 99% möglich ist. Daraus lässt sich die Eignung von ANNs als flexibler und wirkungsvoller Ansatz zur Leckagedetektion in der Wasserversorgung ableiten. Die Untersuchung zeigte weiterhin, dass im Versorgungsnetz von Harare 36 % des eingespeisten Wassers verloren geht. Davon wiederum sind 33 % auf Leckagen zurückzuführen. Umgerechnet bedeutet dies einen finanziellen Verlust von monatlich 1 Millionen Dollar, was 20 % der Gesamteinnahmen der Stadt entspricht. Der Stadtverwaltung von Harare wird daher empfohlen, aktiv an der Beseitigung der Leckagen zu arbeiten, da diese hohen Verluste den Versorgungsbetrieb negativ beeinflussen. Abschließend wird in der Arbeit ein integriertes Leckage-Managementsystem vorgeschlagen, das den Wasserversorgern eine Entscheidungshilfe bei zu ergreifenden Maßnahmen zur Instandhaltung des Verteilnetzes geben soll.
Resumo:
The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3 ± 0.74 years; 49 boys: 12.5 ± 0.76 years; 51 girls: 12.2 ± 0.71 years; both genders in Tanner stages 1-2 by self-report) participating on a regular basis in regional and national-level events. The 100 m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity-power output. The final model was explained by 69% presenting a reasonable adjustment (model's goodness-of-fit; x(2)/df = 3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers' performance.
Resumo:
The analysis of fluid behavior in multiphase flow is very relevant to guarantee system safety. The use of equipment to describe such behavior is subjected to factors such as the high level of investments and of specialized labor. The application of image processing techniques to flow analysis can be a good alternative, however, very little research has been developed. In this subject, this study aims at developing a new approach to image segmentation based on Level Set method that connects the active contours and prior knowledge. In order to do that, a model shape of the targeted object is trained and defined through a model of point distribution and later this model is inserted as one of the extension velocity functions for the curve evolution at zero level of level set method. The proposed approach creates a framework that consists in three terms of energy and an extension velocity function λLg(θ)+vAg(θ)+muP(0)+θf. The first three terms of the equation are the same ones introduced in (LI CHENYANG XU; FOX, 2005) and the last part of the equation θf is based on the representation of object shape proposed in this work. Two method variations are used: one restricted (Restrict Level Set - RLS) and the other with no restriction (Free Level Set - FLS). The first one is used in image segmentation that contains targets with little variation in shape and pose. The second will be used to correctly identify the shape of the bubbles in the liquid gas two phase flows. The efficiency and robustness of the approach RLS and FLS are presented in the images of the liquid gas two phase flows and in the image dataset HTZ (FERRARI et al., 2009). The results confirm the good performance of the proposed algorithm (RLS and FLS) and indicate that the approach may be used as an efficient method to validate and/or calibrate the various existing equipment used as meters for two phase flow properties, as well as in other image segmentation problems.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2015.
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3 ± 0.74 years; 49 boys: 12.5 ± 0.76 years; 51 girls: 12.2 ± 0.71 years; both genders in Tanner stages 1–2 by self-report) participating on a regular basis in regional and national-level events. The 100 m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity–power output. The final model was explained by 69% presenting a reasonable adjustment (model’s goodness-of-fit; x2/df = 3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers’ performance.
Resumo:
Compared to other, plastic materials have registered a strong acceleration in production and consumption during the last years. Despite the existence of waste management systems, plastic_based materials are still a pervasive presence in the environment, with negative consequences on marine ecosystem and human health. The recycling is still challenging due to the growing complexity of product design, the so-called overpackaging, the insufficient and inadequate recycling infrastructure, the weak market of recycled plastics and the high cost of waste treatment and disposal. The Circular economy package, the European Strategy for plastics in a circular economy and the recent European Green Deal include very ambitious programmes to rethink the entire plastic value chain. As regards packaging, all plastic packaging will have to be 100% recyclable (or reusable) and 55% recycled by 2030. Regions are consequently called upon to set up a robust plan able to fit the European objectives. It takes on greater importance in Emilia Romagna where the Packaging valley is located. This thesis supports the definition of a strategy aimed to establish an after-use plastics economy in the region. The PhD work has set the basis and the instruments to establish the so-called Circularity Strategy with the aim to turn about 92.000t of plastic waste into profitable secondary resources. System innovation, life cycle thinking and participative backcasting method have allowed to deeply analyse the current system, orientate the problem and explore sustainable solutions through a broad stakeholder participation. A material flow analysis, accompanied by a barrier analysis, has supported the identification of the gaps between the present situation and the 2030 scenario. Eco-design for and from recycling (and a mass _based recycling rate (based on the effective amount of plastic wastes turned into secondary plastics), valorized by a value_based indicator, are the key-points of the action plan.
Resumo:
Per raggiungere gli obiettivi di neutralità climatica del 2050 stabiliti dal Green Deal europeo, l’approvvigionamento sicuro e sostenibile di materie prime critiche è considerato essenziale e l’attuale crisi energetica ne ha rimarcato l’importanza. Tra queste materie prime, il neodimio risulta essere fondamentale per un ampio numero di applicazioni tecnologiche di interesse crescente come la mobilità elettrica e la generazione di energia elettrica da fonti rinnovabili. La produzione mondiale di neodimio è dominata dalla Cina e l’Italia dipende completamente dalle importazioni per soddisfare la propria domanda. Il riciclo dei prodotti a fine vita potrebbe coprire parte della domanda nazionale di neodimio e ridurre la dipendenza dalle importazioni cinesi. Ma, attualmente, la percentuale di riciclo del metallo è inferiore all’1% globalmente con attività di riciclo spesso inesistenti su scala industriale a livello nazionale. Per dare chiarezza sulla catena del valore di neodimio in Italia e dimostrare le potenzialità del suo riciclo, in questa tesi sono state applicate le metodologie di MFA e di LCA. Un modello dinamico retrospettivo di MFA è stato sviluppato col fine di investigare il ciclo antropogenico del neodimio, identificando e valutando i flussi e le riserve nazionali dal 1995 al 2020. Attraverso un modello di distribuzione dei tempi di vita è stata quantificata la riserva in uso del metallo, che ammonta a 3,3 kt Nd o 56 g Nd pro capite. Un riciclo della riserva in uso potrebbe soddisfare l’attuale domanda di neodimio oltre al 2030. I risultati dell’MFA sono stati integrati con i fattori LCA di caratterizzazione di impatto ambientale, dimostrando che il riciclo potrebbe ridurre più dell’80% delle emissioni di gas serra e della energia richiesta associate alla produzione di neodimio primario. Si prevede che lo studio possa contribuire all’implementazione di politiche e strategie di rafforzamento della catena di approvvigionamento del neodimio.
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.
Resumo:
This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.
Resumo:
This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.
Resumo:
A novel flow-based strategy for implementing simultaneous determinations of different chemical species reacting with the same reagent(s) at different rates is proposed and applied to the spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method relies on the influence of Fe(II) and V(IV) on the rate of the iodide oxidation by Cr(VI) under acidic conditions, the Jones reducing agent is then needed Three different plugs of the sample are sequentially inserted into an acidic KI reagent carrier stream, and a confluent Cr(VI) solution is added downstream Overlap between the inserted plugs leads to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions reveal the different degrees of reaction development and tend to be more precise Data are treated by multivariate calibration involving the PLS algorithm The proposed system is very simple and rugged Two latent variables carried out ca 95% of the analytical information and the results are in agreement with ICP-OES. (C) 2010 Elsevier B V. All rights reserved.
Resumo:
This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.