897 resultados para Flip and Saddle-node Bifurcation
Resumo:
Two models for predicting Septoria tritici on winter wheat (cv. Ri-band) were developed using a program based on an iterative search of correlations between disease severity and weather. Data from four consecutive cropping seasons (1993/94 until 1996/97) at nine sites throughout England were used. A qualitative model predicted the presence or absence of Septoria tritici (at a 5% severity threshold within the top three leaf layers) using winter temperature (January/February) and wind speed to about the first node detectable growth stage. For sites above the disease threshold, a quantitative model predicted severity of Septoria tritici using rainfall during stern elongation. A test statistic was derived to test the validity of the iterative search used to obtain both models. This statistic was used in combination with bootstrap analyses in which the search program was rerun using weather data from previous years, therefore uncorrelated with the disease data, to investigate how likely correlations such as the ones found in our models would have been in the absence of genuine relationships.
Resumo:
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.
Resumo:
The node-density effect is an artifact of phylogeny reconstruction that can cause branch lengths to be underestimated in areas of the tree with fewer taxa. Webster, Payne, and Pagel (2003, Science 301:478) introduced a statistical procedure (the "delta" test) to detect this artifact, and here we report the results of computer simulations that examine the test's performance. In a sample of 50,000 random data sets, we find that the delta test detects the artifact in 94.4% of cases in which it is present. When the artifact is not present (n = 10,000 simulated data sets) the test showed a type I error rate of approximately 1.69%, incorrectly reporting the artifact in 169 data sets. Three measures of tree shape or "balance" failed to predict the size of the node-density effect. This may reflect the relative homogeneity of our randomly generated topologies, but emphasizes that nearly any topology can suffer from the artifact, the effect not being confined only to highly unevenly sampled or otherwise imbalanced trees. The ability to screen phylogenies for the node-density artifact is important for phylogenetic inference and for researchers using phylogenetic trees to infer evolutionary processes, including their use in molecular clock dating. [Delta test; molecular clock; molecular evolution; node-density effect; phylogenetic reconstruction; speciation; simulation.]
Resumo:
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.
Resumo:
The performance benefit when using Grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effect of the synchronization overhead, mainly due to the high variability of completion times of the different tasks, which, in turn, is due to the large heterogeneity of Grid nodes. For this reason, it is important to have models which capture the performance of such systems. In this paper we describe a queueing-network-based performance model able to accurately analyze Grid architectures, and we use the model to study a real parallel application executed in a Grid. The proposed model improves the classical modelling techniques and highlights the impact of resource heterogeneity and network latency on the application performance.
Resumo:
Most research on distributed space time block coding (STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. By applying STBC to 3-or 4-relay node systems, this paper shows that imperfect synchronisation causes significant performance degradation to the conventional detector. To this end, we propose a new STBC detection solution based on the principle of parallel interference cancellation (PIC). The PIC detector is moderate in computational complexity but is very effective in suppressing the impact of imperfect synchronisation.
Resumo:
There are three key driving forces behind the development of Internet Content Management Systems (CMS) - a desire to manage the explosion of content, a desire to provide structure and meaning to content in order to make it accessible, and a desire to work collaboratively to manipulate content in some meaningful way. Yet the traditional CMS has been unable to meet the latter of these requirements, often failing to provide sufficient tools for collaboration in a distributed context. Peer-to-Peer (P2P) systems are networks in which every node is an equal participant (whether transmitting data, exchanging content, or invoking services) and there is an absence of any centralised administrative or coordinating authorities. P2P systems are inherently more scalable than equivalent client-server implementations as they tend to use resources at the edge of the network much more effectively. This paper details the rationale and design of a P2P middleware for collaborative content management.
Resumo:
The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.
Resumo:
This study investigates the superposition-based cooperative transmission system. In this system, a key point is for the relay node to detect data transmitted from the source node. This issued was less considered in the existing literature as the channel is usually assumed to be flat fading and a priori known. In practice, however, the channel is not only a priori unknown but subject to frequency selective fading. Channel estimation is thus necessary. Of particular interest is the channel estimation at the relay node which imposes extra requirement for the system resources. The authors propose a novel turbo least-square channel estimator by exploring the superposition structure of the transmission data. The proposed channel estimator not only requires no pilot symbols but also has significantly better performance than the classic approach. The soft-in-soft-out minimum mean square error (MMSE) equaliser is also re-derived to match the superimposed data structure. Finally computer simulation results are shown to verify the proposed algorithm.
Resumo:
Ligands such as CO, O2, or NO are involved in the biological function of myoglobin. Here we investigate the energetics and dynamics of NO interacting with the Fe(II) heme group in native myoglobin using ab initio and molecular dynamics simulations. At the global minimum of the ab initio potential energy surface (PES), the binding energy of 23.4 kcal/mol and the Fe-NO structure compare well with the experimental results. Interestingly, the PES is found to exhibit two minima: There exists a metastable, linear Fe-O-N minimum in addition to the known, bent Fe-N-O global minimum conformation. Moreover, the T-shaped configuration is found to be a saddle point, in contrast to the corresponding minimum for NO interacting with Fe(III). To use the ab initio results for finite temperature molecular dynamics simulations, an analytical function was fitted to represent the Fe-NO interaction. The simulations show that the secondary minimum is dynamically stable up to 250 K and has a lifetime of several hundred picoseconds at 300 K. The difference in the topology of the heme-NO PES from that assumed previously (one deep, single Fe-NO minimum) suggests that it is important to use the full PES for a quantitative understanding of this system. Why the metastable state has not been observed in the many spectroscopic studies of myoglobin interacting with NO is discussed, and possible approaches to finding it are outlined.
Resumo:
The work reported in this paper is motivated towards handling single node failures for parallel summation algorithms in computer clusters. An agent based approach is proposed in which a task to be executed is decomposed to sub-tasks and mapped onto agents that traverse computing nodes. The agents intercommunicate across computing nodes to share information during the event of a predicted node failure. Two single node failure scenarios are considered. The Message Passing Interface is employed for implementing the proposed approach. Quantitative results obtained from experiments reveal that the agent based approach can handle failures more efficiently than traditional failure handling approaches.
Resumo:
Dormancy is a mechanism that regulates the timing of sprouting (germination) of affected plant parts as well as ensures that the food quality of edible parts is maintained in storage until the following growing season. In yam, however, little is known about the control of tuber initiation or tuber dormancy. The objective of this study was to determine the effects of selected plant growth regulators (PGRs) on tuber initiation and dormancy, using an in vitro system. In two replicated experiments, 2-chloroethylphosphonic acid (ethephon, an ethylene source), abscisic acid (ABA) and gibberellin (GA3) – and their inhibitors silver nitrate, fluridone and 2-chloroethyl-trimethylammonium chloride, respectively – were added at two concentrations to the culture medium prior to explant culture. Dates of micro-tuber initiation and sprouting (end of dormancy) and tuber number were recorded. In the control (no PGR) in Experiment 1, micro-tubers were initiated at the base of the stem after 176 days and sprouted 235 days later, that is 411 days after culturing. Most PGR treatments had only small effects (±30 days) on the duration of dormancy and the time of micro-tuber initiation. However, in GA3 micro-tuber initiation occurred after 76 days, about 100 days earlier than in the control, whereas fluridone affected the position of micro-tubers and duration of dormancy. With fluridone treatments, tubers were found at the base of the stem (normal position) and on lower and upper nodes. Lower node tubers sprouted within 225 days of culturing compared with about 420 days after culturing at other nodal positions and in other PGR treatments. These data suggest an important role for ABA and gibberellic acid in yam micro-tuber initiation and the induction of dormancy.
Resumo:
It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.