948 resultados para Fixed numbers
Resumo:
We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.
Resumo:
PURPOSE Clinical studies related to the long-term outcomes with implant-supported reconstructions are still sparse. The aim of this 10-year retrospective study was to assess the rate of mechanical/technical complications and failures with implant supported fixed dental prostheses (FDPs) and single crowns (SCs) in a large cohort of partially edentulous patients. MATERIALS AND METHODS The comprehensive multidisciplinary examination consisted of a medical/dental history, clinical examination, and a radiographic analysis. Prosthodontic examination evaluated the implant-supported reconstructions for mechanical/technical complications and failures, occlusal analysis, presence/absence of attrition, and location, extension, and retention type. RESULTS Out of three hundred ninety seven fixed reconstructions in three hundred three patients, two hundred sixty eight were SCs and one hundred twenty seven were FDPs. Of these three hundred ninety seven implant-supported reconstructions, 18 had failed, yielding a failure rate of 4.5% and a survival rate of 95.5% after a mean observation period of 10.75 years (range: 8.4-13.5 years). The most frequent complication was ceramic chipping (20.31%) followed by occlusal screw loosening (2.57%) and loss of retention (2.06%). No occlusal screw fracture, one abutment loosening, and two abutment fractures were noted. This resulted in a total mechanical/technical complication rate of 24.7%. The prosthetic success rate over a mean follow-up time of 10.75 years was 70.8%. Generalized attrition and FDPs were associated with statistically significantly higher rates of ceramic fractures when compared with SCs. Cantilever extensions, screw retention, anterior versus posterior, and gender did not influence the chipping rate. CONCLUSIONS After a mean exposure time of 10.75 years, high survival rates for reconstructions supported by Sand-blasted Large-grit Acid-etched implants can be expected. Ceramic chipping was the most frequent complication and was increased in dentitions with attrition and in FDPs compared with SCs.
Resumo:
PURPOSE To assess the survival outcomes and reported complications of screw- and cement-retained fixed reconstructions supported on dental implants. MATERIALS AND METHODS A Medline (PubMed), Embase, and Cochrane electronic database search from 2000 to September 2012 using MeSH and free-text terms was conducted. Selected inclusion and exclusion criteria guided the search. All studies were first reviewed by abstract and subsequently by full-text reading by two examiners independently. Data were extracted by two examiners and statistically analyzed using a random effects Poisson regression. RESULTS From 4,324 abstracts, 321 full-text articles were reviewed. Seventy-three articles were found to qualify for inclusion. Five-year survival rates of 96.03% (95% confidence interval [CI]: 93.85% to 97.43%) and 95.55% (95% CI: 92.96% to 97.19%) were calculated for cemented and screw-retained reconstructions, respectively (P = .69). Comparison of cement and screw retention showed no difference when grouped as single crowns (I-SC) (P = .10) or fixed partial dentures (I-FDP) (P = .49). The 5-year survival rate for screw-retained full-arch reconstructions was 96.71% (95% CI: 93.66% to 98.31). All-ceramic reconstruction material exhibited a significantly higher failure rate than porcelain-fused-to-metal (PFM) in cemented reconstructions (P = .01) but not when comparing screw-retained reconstructions (P = .66). Technical and biologic complications demonstrating a statistically significant difference included loss of retention (P ≤ .01), abutment loosening (P ≤ .01), porcelain fracture and/or chipping (P = .02), presence of fistula/suppuration (P ≤ .001), total technical events (P = .03), and total biologic events (P = .02). CONCLUSIONS Although no statistical difference was found between cement- and screw-retained reconstructions for survival or failure rates, screw-retained reconstructions exhibited fewer technical and biologic complications overall. There were no statistically significant differences between the failure rates of the different reconstruction types (I-SCs, I-FDPs, full-arch I-FDPs) or abutment materials (titanium, gold, ceramic). The failure rate of cemented reconstructions was not influenced by the choice of a specific cement, though cement type did influence loss of retention.
Resumo:
Fucosidosis is a rare lysosomal storage disease. A 14-year-old girl is presented, with recurrent infections, progressive dystonic movement disorder and mental retardation with onset in early childhood. The clinical picture was also marked by mild morphologic features, but absent dysostosis multiplex and organomegaly. MRI images at 6.5 years of age were reminiscent of pallidal iron deposition ("eye-of-the-tiger" sign) seen in neurodegeneration with brain iron accumulation (NBIA) disorders. Progressively spreading angiokeratoma corporis diffusum led to the correct diagnosis. This case extends the scope of clinical and neuroradiological manifestations of fucosidosis.
Resumo:
Microbial colonization of the gut induces the development of gut-associated lymphoid tissue (GALT). The molecular mechanisms that regulate GALT function and result in gut-commensal homeostasis are poorly defined. T follicular helper (Tfh) cells in Peyer's patches (PPs) promote high-affinity IgA responses. Here we found that the ATP-gated ionotropic P2X7 receptor controls Tfh cell numbers in PPs. Lack of P2X7 in Tfh cells enhanced germinal center reactions and high-affinity IgA secretion and binding to commensals. The ensuing depletion of mucosal bacteria resulted in reduced systemic translocation of microbial components, lowering B1 cell stimulation and serum IgM concentrations. Mice lacking P2X7 had increased susceptibility to polymicrobial sepsis, which was rescued by Tfh cell depletion or administration of purified IgM. Thus, regulation of Tfh cells by P2X7 activity is important for mucosal colonization, which in turn results in IgM serum concentrations necessary to protect the host from bacteremia.
Resumo:
Large numbers of microorganisms colonise the skin and mucous membranes of animals, with their highest density in the lower gastrointestinal tract. The impact of these microbes on the host can be demonstrated by comparing animals (usually mice) housed under germ-free conditions, or colonised with different compositions of microbes. Inbreeding and embryo manipulation programs have generated a wide variety of mouse strains with a fixed germ-line (isogenic) and hygiene comparisons robustly show remarkably strong interactions between the microbiota and the host, which can be summarised in three axioms. (I) Live microbes are largely confined to their spaces at body surfaces, provided the animal is not suffering from an infection. (II) There is promiscuous molecular exchange throughout the host and its microbiota in both directions [1]. (III) Every host organ system is profoundly shaped by the presence of body surface microbes. It follows that one must draw a line between live microbial and host “spaces” (I) to understand the crosstalk (II and III) at this interesting interface of the host-microbial superorganism. Of course, since microbes can adapt to very different niches, there has to be more than one line. In this issue of EMBO Reports, Johansson and colleagues have studied mucus, which is the main physical frontier for most microbes in the intestinal tract: they report how different non-pathogenic microbiota compositions affect its permeability and the functional protection of the epithelial surface [2].
Resumo:
OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (p<0.001). When the outcomes in anterior and posterior regions were compared feldspathic/silica-based ceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (p<0.0001), the other crown types performed similarly. Densely sintered zirconia SCs were more frequently lost due to veneering ceramic fractures than metal-ceramic SCs (p<0.001), and had significantly more loss of retention (p<0.001). In total higher 5 year rates of framework fracture were reported for the all-ceramic SCs than for metal-ceramic SCs. CONCLUSIONS Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems.
Resumo:
OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. CONCLUSIONS Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs.
Resumo:
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
Resumo:
Autophagy assures cellular homeostasis, and gains increasing importance in cancer, where it impacts on carcinogenesis, propagation of the malignant phenotype and development of resistance. To date, its tissue-based analysis by immunohistochemistry remains poorly standardized. Here we show the feasibility of specifically and reliably assessing the autophagy markers LC3B and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry. Preceding functional experiments consisted of depleting LC3B and p62 in H1299 lung cancer cells with subsequent induction of autophagy. Western blot and immunofluorescence validated antibody specificity, knockdown efficiency and autophagy induction prior to fixation in formalin and embedding in paraffin. LC3B and p62 antibodies were validated on formalin fixed and paraffin embedded cell pellets of treated and control cells and finally applied on a tissue microarray with 80 human malignant and non-neoplastic lung and stomach formalin fixed and paraffin embedded tissue samples. Dot-like staining of various degrees was observed in cell pellets and 18/40 (LC3B) and 22/40 (p62) tumors, respectively. Seventeen tumors were double positive for LC3B and p62. P62 displayed additional significant cytoplasmic and nuclear staining of unknown significance. Interobserver-agreement for grading of staining intensities and patterns was substantial to excellent (kappa values 0.60 - 0.83). In summary, we present a specific and reliable IHC staining of LC3B and p62 on formalin fixed and paraffin embedded human tissue. Our presented protocol is designed to aid reliable investigation of dysregulated autophagy in solid tumors and may be used on large tissue collectives.
Resumo:
The paper considers panel data methods for estimating ordered logit models with individual-specific correlated unobserved heterogeneity. We show that a popular approach is inconsistent, whereas some consistent and efficient estimators are available, including minimum distance and generalized method-of-moment estimators. A Monte Carlo study reveals the good properties of an alternative estimator that has not been considered in econometric applications before, is simple to implement and almost as efficient. An illustrative application based on data from the German Socio-Economic Panel confirms the large negative effect of unemployment on life satisfaction that has been found in the previous literature.
Resumo:
This paper proposes a new estimator for the fixed effects ordered logit model. In contrast to existing methods, the new procedure allows estimating the thresholds. The empirical relevance and simplicity of implementation is illustrated in an application on the effect of unemployment on life satisfaction.
Resumo:
This article gives details of our proposal to replace ordinary chiral SU(3)L×SU(3)R perturbation theory χPT3 by three-flavor chiral-scale perturbation theory χPTσ. In χPTσ, amplitudes are expanded at low energies and small u,d,s quark masses about an infrared fixed point αIR of three-flavor QCD. At αIR, the quark condensate ⟨q¯q⟩vac≠0 induces nine Nambu-Goldstone bosons: π,K,η, and a 0++ QCD dilaton σ. Physically, σ appears as the f0(500) resonance, a pole at a complex mass with real part ≲ mK. The ΔI=1/2 rule for nonleptonic K decays is then a consequence of χPTσ, with a KSσ coupling fixed by data for γγ→ππ and KS→γγ. We estimate RIR≈5 for the nonperturbative Drell-Yan ratio R=σ(e+e−→hadrons)/σ(e+e−→μ+μ−) at αIR and show that, in the many-color limit, σ/f0 becomes a narrow qq¯ state with planar-gluon corrections. Rules for the order of terms in χPTσ loop expansions are derived in Appendix A and extended in Appendix B to include inverse-power Li-Pagels singularities due to external operators. This relates to an observation that, for γγ channels, partial conservation of the dilatation current is not equivalent to σ-pole dominance.