963 resultados para Fertilization of plants


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activated carbon has become a widely used tool to investigate root-mediated allelopathy of plants, especially in plant invasion biology, because it adsorbs and thereby neutralizes root exudates. Allelopathy has been a controversially debated phenomenon for years, which revived in plant invasion biology as one possible reason for the success of invasive plants. Noxious plant exudates may harm other plants and provide an advantage to the allelopathic plant. However, root exudates are not always toxic, but may stimulate the microbial community and change nutrient availability in the rhizosphere. In a greenhouse experiment, we investigated the interacting effects of activated carbon, arbuscular mycorrhiza and plant competition between the invasive Senecio inaequidens and the native Artemisia vulgaris. Furthermore, we tested whether activated carbon showed any undesired effects by directly affecting mycorrhiza or soil chemistry. Contrary to the expectation, S. inaequidens was a weak competitor and we could not support the idea that allelopathy was involved in the competition. Activated carbon led to a considerable increase in the aboveground biomass production and reduced the infection with arbuscular mycorrhiza of both plant species. We expected that arbuscular mycorrhiza promotes plant growth by increasing nutrient availability, but we found the contrary when activated carbon was added. Chemical analyses of the substrate showed, that adding activated carbon resulted in a strong increase in plant available phosphate and in a decrease of the C(organic)/N(total) ration both of which suggest stimulated microbial activity. Thus, activated carbon not only reduced potential allelopathic effects, but substantially changed the chemistry of the substrate. These results show that activated carbon should be handled with great care in ecological experiments on allelopathy because of possible confounding effects on the soil community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The defense of plants against herbivores and pathogens involves the participation of an enormous range of different metabolites, some of which act directly as defensive weapons against enemies (toxins or deterrents) and some of which act as components of the complex internal signaling network that insures that defense is timed to enemy attack. Recent work reveals a surprising trend: The same compounds may act as both weapons and signals of defense. For example, two groups of well-studied defensive weapons, glucosinolates and benzoxazinoids, trigger the accumulation of the protective polysaccharide callose as a barrier against aphids and pathogens. In the other direction, several hormones acting in defense signaling (and their precursors and products) exhibit activity as weapons against pathogens. Knowing which compounds are defensive weapons, which are defensive signals and which are both is vital for understanding the functioning of plant defense systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Herbivore-induced volatiles play an important role in the indirect defense of plants. After herbivore damage, volatiles are released from the plant and can attract herbivore enemies that protect the plant from additional damage. The herbivore-induced volatile blend is complex and usually consists of mono- and sesquiterpenes, aromatic compounds, and indole. Although these classes of compounds are generally produced at different times after herbivore damage, the release of the terpene (E)-β-caryophyllene and the aromatic ester methyl anthranilate appear to be tightly coordinated. We have studied the herbivore induction patterns of two terpene synthases from Zea mays L. (Poaceae), TPS23 and TPS10, as well as S-adenosyl-L-methionine:anthranilic acid carboxyl methyltransferases (AAMT1), which are critical for the production of terpenes and anthranilate compounds, respectively. The transcript levels of tps23 and aamt1 displayed the same kinetics after damage by the larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and showed the same organ-specific and haplotype-specific expression patterns. Despite its close functional relation to TPS23, the terpene synthase TPS10 is not expressed in roots and does not display the haplotype-specific expression pattern. The results indicate that the same JA-mediated signaling cascade maycontrol the production of both the terpene (E)-β-caryophyllene and aromatic ester methyl anthranilate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and aims Differences in chemical composition of root compounds and root systems among tree species may affect organic matter (OM) distribution, source and composition in forest soils. The objective of this study was to elucidate the contribution of species specific cutin and suberin biomarkers as proxies for shoot- and root-derived organic carbon (OC) to soil OM at different depths with increasing distance to the stems of four different tree species. Methods The contribution of cutin- and suberin-derived lipids to OM in a Cutanic Alisol was analyzed with increasing soil depth and distance to the stems of Fagus sylvatica L., Picea abies (L.) Karst., Quercus robur L. and Pseudotsuga menziesii (Mirb.) Franco. Cutin and suberin monomers of plants and soils were analyzed by alkaline hydrolysis and subsequent gas chromatography–mass spectrometry. Results The amount and distribution of suberin-derived lipids in soil clearly reflected the specific root system of the different tree species. The amount of cutin-derived lipids decreased strongly with soil depth, indicating that the input of leaf/needle material is restricted to the topsoil. In contrast to the suberin-derived lipids, the spatial pattern of cutin monomer contribution to soil OM did not depend on tree species. Conclusions Our results document the importance of tree species as a main factor controlling the composition and distribution of OM in forest soils. They reveal the impact of tree species on root-derived OM distribution and the necessity to distinguish among different zones when studying soil OM storage in forests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5′‐phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with D‐sorbitol or D‐mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O‐acetyl‐L‐serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N‐deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]‐sulphate feeding experiments showed that the addition of glucose to dark‐treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N‐deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co‐ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergistically.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using pollen percentages and charcoal influx to reconstruct the Holocene vegetation and fire history, we differentiate six possible responses of plants to fire of medium and high frequency: fire-intolerant, fire damaged, fire-sensitive, fire-indifferent, fire-enhanced and fire-adapted. The fire sensitivity of 17 pollen types, representing 20 woody species in the southern Alps, is validated by comparison with today's ecological studies of plant chronosequences. A surprising coincidence of species reaction to fire of medium frequency is character istic for completely different vegetation types, such as woodlands dominated byAbies alba (7000 years ago) andCastanea sativa (today). The temporal persistence of post-fire behaviour of plant taxa up to thousands of years suggests a generally valid species-related fire sensitivity that may be influenced only in part by changing external conditions. A non-analogous behaviour of woody taxa after fire is documented for high fire frequencies. Divergent behaviour patterns of plant taxa in response to medium and high fire frequencies (e.g., increases and decreases ofAlnus glutinosa) also indicate that post-fire plant reactions may change with increasing fire fre quency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Aims: The response of forest ecosystems to continuous nitrogen (N) deposition is still uncertain. We investigated imports and exports of dissolved N from mull-type organic layers to identify the controls of N leaching in Central European beech forests under continuous N deposition. Methods: Dissolved N fluxes with throughfall and through mull-type organic layers (litter leachate) were measured continuously in 12 beech forests on calcareous soil in two regions in Germany over three consecutive growing seasons. Results Mean growing season net (i.e. litter leachate – throughfall flux) fluxes of total dissolved N (TDN) from the organic layer were low (2.3 ± 5.6 kg ha −1 ) but varied widely from 12.9 kg ha −1 to –8.3 kg ha −1 . The small increase of dissolved N fluxes during the water passage through mull-type organic layers suggested that high turnover rates coincided with high microbial N assimilation and plant N uptake. Stand basal area had a positive feedback on N fluxes by providing litter for soil organic matter forma- tion. Plant diversity, especially herb diversity, reduced dissolved N fluxes. Soil fauna biomass increased NO3−-N fluxes with litter leachate by stimulating mineralization. Microbial biomass measures were not related to dissolved N fluxes. Conclusions Our results show that dissolved N exports from organic layers contain significant amounts of throughfall-derived N (mainly NO3−-N) that flushes through the organic layer but also highlight that N leaching from organic layers is driven by the complex interplay of plants, animals and microbes. Furthermore, diverse understories reduce N leaching from Central European beech forests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes), and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lake shore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27 of the established populations survived until the end of the experiment in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.