944 resultados para Feature-domain super-resolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry's standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device.^ This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. ^ In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. ^ The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clusters of galaxies are the most massive and large gravitationally bounded systems in the whole Universe. Their study is of fundamental importance to constrain cosmological parameters and to obtain informations regarding various kind of emission in different wavebands. In particular, in the radio domain, beside the diffuse emission, the study is focused on the radio galaxies emission. Radio galaxies in clusters can have peculiar morphology, since they interact with the intracluster medium (ICM) in which they are embedded. Particularly, in this thesis we focused our attention on the so-called Narrow-Angle Tailed radio galaxies (NAT), which present radio jets that are bent at extreme angle, up to 90 degrees, from their original orientation. Some NAT show a narrow extended structure and the two radio tails are not resolved even with high resolution radio observations. An example is provided by the source IC310, in the Perseus Cluster, whose structure has been recently interpreted as due to Doppler boosting effects of a relativistic jet oriented at a small angle with respect to the line of sight. If the structure is due to relativistic effects, this implies that the jets are relativistic at about 400 kpc from the core, but this is in contrast with unified models, which predict that for low-power radio source (NAT are classified as FRI radio galaxies) the jets decelerate to sub-relativistic speed within a few kpc from the core. To investigate this scientific topic, in this thesis we have analyzed the innermost structure of a sample of eleven radio galaxies showing a very narrow NAT structure. We can conclude that the structure of these radio galaxies is different from that of IC310. These radio galaxies are indeed strongly influenced by environmental effects and are similar to classical NAT sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of a study into the quality of functionalized surfaces for nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent post-etch pattern definition and minimum feature size all depend on the quality of the Au substrate used in atomic nanolithographic experiments. We find sputtered Au substrates yield much smoother surfaces and a higher density of {111} oriented grains than evaporated Au surfaces. A detailed study of the self-assembly mechanism using molecular resolution AFM and STM has shown that the monolayer is composed of domains with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. Exposure of the SAM to an optically-cooled atomic Cs beam traversing a two-dimensional array of submicron material masks ans also standing wave optical masks allowed determination of the minimum average Cs dose (2 Cs atoms per SAM molecule) and the realization of < 50 nm structures. The SAM monolayer contains many non-uniformities such as pin-holes, domain boundaries and monoatomic depressions which are present in the Au surface prior to SAM adsorption. These imperfections limit the use of alkanethiols as a resist in atomic nanolithography experiments. These studies have allowed us to realize an Atom Pencil suitable for deposition of precision quantities of material at the microand nanoscale to an active surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of {111} oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 × 2) superlattice structure is observed as a (3 × 2√3) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au{111} lattice and aligned along its lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of ∼20 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution. Aims: We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected. Methods: We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. Results: We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M⊕ and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero. Conclusions: The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected, we will be able to fully characterise the system, including the relative orbital inclinations. With a clearly known mass, HD 219828 c may become a benchmark object for the range in between giant planets and brown dwarfs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An energy analysis of the Fine Resolution Antarctic Model (FRAM) reveals the instability processes in the model. The main source of time-mean kinetic energy is the wind stress and the main sink is transfer to mean potential energy. The wind forcing thus helps maintain the density structure. Transient motions result from internal instabilities of the Bow rather than seasonal variations of the forcing. Baroclinic instability is found to be an important mechanism in FRAM. The highest values of available potential energy are found in the western boundary regions as well as in the Antarctic Circumpolar Current (ACC) region. All subregions with predominantly zonal flow are found to be baroclinically unstable. The observed deficit of eddy kinetic energy in FRAM occurs as a result of the high lateral friction, which decreases the growth rates of the most unstable waves. This high friction is required for the numerical stability of the model and can only be made smaller by using a finer horizontal resolution. A grid spacing of at least 10-15 km would be required to resolve the most unstable waves in the southern part of the domain. Barotropic instability is also found to be important for the total domain balance. The inverse transfer (that is, transfer from eddy to mean kinetic energy) does not occur anywhere, except in very localized tight jets in the ACC. The open boundary condition at the northern edge of the model domain does not represent a significant source or sink of eddy variability. However, a large exchange between internal and external mode energies is found to occur. It is still unclear how these boundary conditions affect the dynamics of adjacent regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate cascaded 100-Gb/s sub-channel add/drop from a 1-Tb/s multi-band OFDM super-channel having 2-GHz inter-sub-channel guard-bands within a recirculating loop via a hierarchical ROADM using high-resolution filters, showcasing 1000-km transmission reach and five ROADM node passages for the add/drop sub-channel when hybrid Raman-EDFA is implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent marine long-offset transient electromagnetic (LOTEM) measurements yielded the offshore delineation of a fresh groundwater body beneath the seafloor in the region of Bat Yam, Israel. The LOTEM application was effective in detecting this freshwater body underneath the Mediterranean Sea and allowed an estimation of its seaward extent. However, the measured data set was insufficient to understand the hydrogeological configuration and mechanism controlling the occurrence of this fresh groundwater discovery. Especially the lateral geometry of the freshwater boundary, important for the hydrogeological modelling, could not be resolved. Without such an understanding, a rational management of this unexploited groundwater reservoir is not possible. Two new high-resolution marine time-domain electromagnetic methods are theoretically developed to derive the hydrogeological structure of the western aquifer boundary. The first is called Circular Electric Dipole (CED). It is the land-based analogous of the Vertical Electric Dipole (VED), which is commonly applied to detect resistive structures in the subsurface. Although the CED shows exceptional detectability characteristics in the step-off signal towards the sub-seafloor freshwater body, an actual application was not carried out in the extent of this study. It was found that the method suffers from an insufficient signal strength to adequately delineate the resistive aquifer under realistic noise conditions. Moreover, modelling studies demonstrated that severe signal distortions are caused by the slightest geometrical inaccuracies. As a result, a successful application of CED in Israel proved to be rather doubtful. A second method called Differential Electric Dipole (DED) is developed as an alternative to the intended CED method. Compared to the conventional marine time-domain electromagnetic system that commonly applies a horizontal electric dipole transmitter, the DED is composed of two horizontal electric dipoles in an in-line configuration that share a common central electrode. Theoretically, DED has similar detectability/resolution characteristics compared to the conventional LOTEM system. However, the superior lateral resolution towards multi-dimensional resistivity structures make an application desirable. Furthermore, the method is less susceptible towards geometrical errors making an application in Israel feasible. In the extent of this thesis, the novel marine DED method is substantiated using several one-dimensional (1D) and multi-dimensional (2D/3D) modelling studies. The main emphasis lies on the application in Israel. Preliminary resistivity models are derived from the previous marine LOTEM measurement and tested for a DED application. The DED method is effective in locating the two-dimensional resistivity structure at the western aquifer boundary. Moreover, a prediction regarding the hydrogeological boundary conditions are feasible, provided a brackish water zone exists at the head of the interface. A seafloor-based DED transmitter/receiver system is designed and built at the Institute of Geophysics and Meteorology at the University of Cologne. The first DED measurements were carried out in Israel in April 2016. The acquired data set is the first of its kind. The measured data is processed and subsequently interpreted using 1D inversion. The intended aim of interpreting both step-on and step-off signals failed, due to the insufficient data quality of the latter. Yet, the 1D inversion models of the DED step-on signals clearly detect the freshwater body for receivers located close to the Israeli coast. Additionally, a lateral resistivity contrast is observable in the 1D inversion models that allow to constrain the seaward extent of this freshwater body. A large-scale 2D modelling study followed the 1D interpretation. In total, 425 600 forward calculations are conducted to find a sub-seafloor resistivity distribution that adequately explains the measured data. The results indicate that the western aquifer boundary is located at 3600 m - 3700 m before the coast. Moreover, a brackish water zone of 3 Omega*m to 5 Omega*m with a lateral extent of less than 300 m is likely located at the head of the freshwater aquifer. Based on these results, it is predicted that the sub-seafloor freshwater body is indeed open to the sea and may be vulnerable to seawater intrusion.