971 resultados para Familial melanoma
Resumo:
A prodrug, temozolomide acid hexyl ester (TMZA-HE), was identified as a skin-deliverable congener for temozolomide (TMZ) to treat skin cancers. Poor solubility and instability of TMZA-HE rendered a serious challenge for formulation of a topical preparation. Microemulsions (ME) were chosen as a potential vehicle for TMZA-HE topical preparations. ME systems were constructed with either oleic acid (OA) or isopropyl myristate (IPM) as the oil phase and tocopheryl (vitamin E) polyethylene glycol 1000 succinate (VE-TPGS) as a surfactant. Topical formulations of OA and IPM ME systems demonstrated beneficial solubilising ability and provided a stable environment for the prodrug, TMZA-HE. Significant differences between the microstructures of OA and IPM ME systems were revealed by freeze fracture electron microscopy (FFEM) and different loading abilities and permeation potencies between the two systems were also identified. In permeation studies, IPM ME systems, with inclusion of isopropyl alcohol (IPA) as a co-surfactant, significantly increased TMZA-HE permeation through silicon membranes and rat skin resulting in less drug retention within the skin, while OA ME systems demonstrated higher solubilising ability and a higher concentration of TMZA-HE retained within the skin. Therefore IPM ME systems are promising for transdermal delivery of TMZA-HE and OA ME systems may be a suitable choice for a topical formulation of TMZA-HE. © 2007 The Authors.
Resumo:
In sporadic Alzheimer’s disease (SAD), the classic (‘dense-cored’) ß-amyloid (Aß) deposits are aggregated around the larger blood vessels in the upper laminae of the cerebral cortex. To determine whether a similar relationship exists in familial AD (FAD), the spatial correlations between the diffuse, primitive, and classic ß-amyloid (Aß deposits and blood vessels were studied in ten FAD cases including cases linked to amyloid precursor protein (APP) and presenilin (PSEN) gene mutations and expressing apolipoprotein E (apo E) allele E4. Sections of frontal cortex were immunolabelled with antibodies against Aß and with collagen IV to reveal the Aß deposits and blood vessel profiles. In the FAD cases as a whole, Aßdeposits were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Aßdeposits and the larger (>10 µm) and smaller diameter (<10 µm) blood vessels in one and three cases respectively. The primitive Aß deposits were spatially correlated with larger and smaller blood vessels each in four cases and the classic deposits in three and four cases respectively. Apo E genotype of the patient did not influence spatial correlation with blood vessels. Hence, spatial correlations between the classic deposits and larger diameter blood vessels were significantly less frequent in FAD compared with SAD. It was concluded that both Aß deposit morphology and AD subtype determine spatial correlations with blood vessels in AD.
Resumo:
The spatial patterns of the diffuse, primitive, and classic β-amyloid (Aβ) deposits were compared in cortical regions in early-onset familial Alzheimer's disease (EO-FAD) linked to mutations of the amyloid precursor protein APP) or presenilin 1 (PSEN1) genes, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The objective was to determine whether genetic factors influenced the spatial patterns of the Aβ deposits. Aβ deposits were distributed either in clusters which were regularly distributed parallel to the pia mater or in larger, non-regularly distributed clusters. There were no significant differences in spatial pattern of the diffuse deposits between patient groups but mean cluster size of the diffuse deposits was larger in FAD compared with SAD. Primitive Aβ deposits were more frequently distributed in regular clusters and less frequently distributed in large clusters in FAD compared with SAD. Classic Aβ deposits were more frequently distributed in regularly spaced clusters and less frequently distributed in large clusters in LO-FAD compared with EO-FAD. There were no significant differences in the spatial patterns or cluster sizes of Aβ deposits in cases classified according to apolipoprotein E (APOE) genotype. These results suggest (1) greater deposition of Aβ in the form of clusters of diffuse deposits in FAD, (2) a greater proportion of diffuse deposits may be converted to primitive deposits in SAD, (3) classic deposits are more widely distributed in EO-FAD, and (4) the presence of APOE allele ε4 has little effect on the spatial patterns of Aβ deposits.
Resumo:
The density of diffuse, primitive and classic beta-amyloid (A beta) deposits was studied in relation to the incidence of blood vessels in the superior frontal gyrus of nine cases of sporadic Alzheimer's disease (SAD), two cases of familial Alzheimer's disease (FAD) with amyloid precursor protein (APP) mutations (APP717, Val --> Ile), and eight cases of FAD not linked to chromosomes 21, 14 or 1. Stepwise multiple regression was used to determine for each patient whether variations in the density of A beta deposits along the cortex were significantly correlated with the incidence of blood vessels. In the majority of FAD and SAD cases, the density of the diffuse and primitive type A beta deposits was not related to blood vessels. However, the incidence of the larger diameter (> 10 microns) blood vessels was positively correlated with the density of the classic A beta deposits in eight (89%) SAD and two (20%) FAD cases. The data suggest that the densities of vessels and deposits were not significantly correlated between cases but only within cases, suggesting a strictly local effect. In addition, the spatial association between classic A beta deposits and blood vessels may be more apparent in SAD compared with FAD cases.
Resumo:
To further characterize the neuropathology of the heterogeneous molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP).
Resumo:
Frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP) is a neurodegenerative disease characterized by variable neocortical and allocortical atrophy principally affecting the frontal and temporal lobes. Histologically, there is neuronal loss, microvacuolation in the superficial cortical laminae, and a reactive astrocytosis. A variety of TDP-43 immunoreactive changes are present in FTLD-TDP including neuronal cytoplasmic inclusions (NCI), neuronal intranuclear inclusions (NII), dystrophic neurites (DN) and, oligodendroglial inclusions (GI). Many cases of familial FTLD-TDP are caused by DNA mutations of the progranulin (GRN) gene. Hence, the density, spatial patterns, and laminar distribution of the pathological changes were studied in nine cases of FLTD-TDP with GRN mutation. The densities of NCI and DN were greater in cases caused by GRN mutation compared with sporadic cases. In cortical regions, the commonest spatial pattern exhibited by the TDP-43 immunoreactive lesions was the presence of clusters of inclusions regularly distributed parallel to the pia mater. In approximately 50% of cortical gyri, the NCI exhibited a peak of density in the upper cortical laminae while the GI were commonly distributed across all laminae. The distribution of the NII and DN was variable, the most common pattern being a peak of NII density in the lower cortical laminae and DN in the upper cortical laminae. These results suggest in FTLD-TDP caused by GRN mutation: 1) there are greater densities of NCI and DN than in sporadic cases of the disease, 2) there is degeneration of the cortico-cortical and cortico-hippocampal pathways, and 3) cortical degeneration occurs across the cortical laminae, the various TDP-43 immunoreactive inclusions often being distributed in different cortical laminae.
Resumo:
Introduction: The density of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in nine cases of sporadic Alzheimer's disease (SAD) and 10 cases of familial Alzheimer's disease (FAD) including two cases with amyloid precursor protein (APP) mutations (APP717, Val - Ile). Materials and Methods: Sections of frontal cortex stained for Abeta12-28 counterstained with collagen type IV antiserum. Densities measured along the upper cortex in 64-128, 1000 x 200 micron continuous sample fields. Results: The density of diffuse and primitive deposits was not correlated with blood vessels in FAD or SAD. The density of the classic deposits was positively correlated with the larger diameter (> 10 micron) blood vessels in all SAD cases and weakly correlated with blood vessel in three non-APP FAD cases. Conclusions: Blood vessels are less important in the formation of classic Abeta deposits in FAD compared with SAD.
Resumo:
Patients with Bipolar Disorder (BD) perform poorly on tasks of selective attention and inhibitory control. Although similar behavioural deficits have been noted in their relatives, it is yet unclear whether they reflect dysfunction in the same neural circuits. We used functional magnetic resonance imaging and the Stroop Colour Word Task to compare task related neural activity between 39 euthymic BD patients, 39 of their first-degree relatives (25 with no Axis I disorders and 14 with Major Depressive Disorder) and 48 healthy controls. Compared to controls, all individuals with familial predisposition to BD, irrespective of diagnosis, showed similar reductions in neural responsiveness in regions involved in selective attention within the posterior and inferior parietal lobules. In contrast, hypoactivation within fronto-striatal regions, implicated in inhibitory control, was observed only in BD patients and MDD relatives. Although striatal deficits were comparable between BD patients and their MDD relatives, right ventrolateral prefrontal dysfunction was uniquely associated with BD. Our findings suggest that while reduced parietal engagement relates to genetic risk, fronto-striatal dysfunction reflects processes underpinning disease expression for mood disorders. © 2011 Elsevier Inc.
Resumo:
To determine whether genetic factors influence frontal lobe degeneration in Alzheimer's disease (AD), the laminar distributions of diffuse, primitive, and classic β-amyloid (Aβ) peptide deposits were compared in early-onset familial AD (EO-FAD) linked to mutations of the amyloid precursor protein (APP) or presenilin 1 (PSEN1) gene, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The influence of apolipoprotein E (Apo E) genotype on laminar distribution was also studied. In the majority of FAD and SAD cases, maximum density of the diffuse and primitive Aβ deposits occurred in the upper cortical layers, whereas the distribution of the classic Aβ deposits was more variable, either occurring in the lower layers, or a double-peaked (bimodal) distribution was present, density peaks occurring in upper and lower layers. The cortical layer at which maximum density of Aβ deposits occurred and maximum density were similar in EO-FAD, LO-FAD and SAD. In addition, there were no significant differences in distributions in cases expressing Apo E ε4 alleles compared with cases expressing the ε2 or ε3 alleles. These results suggest that gene expression had relatively little effect on the laminar distribution of Aβ deposits in the frontal lobe of the AD cases studied. Hence, the pattern of frontal lobe degeneration in AD is similar regardless of whether it is associated with APP and PSEN1, mutation, allelic variation in Apo E, or with SAD.
Resumo:
Abnormal protein aggregates of transactive response (TAR) DNA-binding protein (TDP-43) in the form of neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), neuronal internuclear inclusions (NII), and dystrophic neurites (DN) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of phosphorylated TDP-43 (pTDP-43) in neurodegeneration in FTLD-TDP, the spatial patterns of the pTDP-43-immunoreactive NCI, GI, NII, and DN were studied in frontal and temporal cortex in three groups of cases: (1) familial FTLD-TDP caused by progranulin (GRN) mutation, (2) a miscellaneous group of familial cases containing cases caused by valosin-containing protein (VCP) mutation, ubiquitin associated protein 1 (UBAP1) mutation, and cases not associated with currently known genes, and (3) sporadic FTLD-TDP. In a significant number of brain regions, the pTDP-43-immunoreactive inclusions developed in clusters and the clusters were distributed regularly parallel to the tissue boundary. The spatial patterns of the inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody. The spatial patterns and cluster sizes of the pTDP-43-immunoreactive inclusions were similar in GRN mutation cases, remaining familial cases, and in sporadic FTLD-TDP. Hence, pathological changes initiated by different genetic factors in familial cases and by unknown causes in sporadic FTLD-TDP appear to follow a parallel course resulting in very similar patterns of degeneration of frontal and temporal lobes.
Resumo:
The adrenal cortex secretes steroid hormones, including glucocorticoids and mineralocorticoids. Glucocorticoids control body homeostasis, stress, and immune responses, while mineralocorticoids regulate the water and electrolyte balance. A spectrum of genetic defects can disrupt the normal adrenal development, causing adrenal hypoplasia and various forms of adrenal insufficiency, which usually present in infancy or childhood with or without mineralocorticoid deficiency and with or without gonadal dysfunction. The genetic causes of adrenal hypoplasia can be broadly categorized into adrenal hypoplasia due to adrenocorticotropic hormone resistance syndromes (i.e., familial glucocorticoid deficiency and triple A syndrome) and adrenal hypoplasia due to primary defects in the development of the adrenal glands (i.e., X-linked adrenal hypoplasia congenita and primary adrenal hypoplasia caused by steroidogenic factor 1 mutations).
Resumo:
Skin cancer is the most common form of cancer in the United States. Melanoma is a particular type of skin cancer, which arises from the malignant transformation of melanocytes and generally exhibits a high propensity to metastasize. Melanoma progression is dependent on angiogenesis to deliver the oxygen and nutrients required to maintain the altered metabolism of rapidly proliferating tumorigenic cells. Recent studies have implicated the growth factor Endothelin 3 (Edn3) in melanoma progression and metastasis. The aim of this study was to examine the role that Edn3 plays in the angiogenesis of melanocytic lesions. For this purpose, Dct-Grm1 transgenic mice, which spontaneously acquire melanocytic lesions through the aberrant expression of the metabotropic glutamate receptor 1 (mGluR1), were crossed with K5-Edn3 transgenic mice that overexpress Edn3. Tumors in the Dct-Grm1/K5-Edn3 experimental population were examined and compared to the control Dct-Grm1 population using immuno-fluorescent staining targeted against the vascular endothelial cell marker CD31. Proteomic arrays were also used and identified changes in the expression of specific angiogenic factors. CD31 antibody staining results revealed an increased vascular density in Dct-Grm1/K5-Edn3 tumors compared with tumors from the Dct-Grm1 controls. Analysis of the relative expression of angiogenic proteins showed an upregulation of various vascular factors in tumors from the Dct-Grm1/K5-Edn3 population, including VEGF-B, MMP-8, MMP-9, and Angiogenin. These results suggest that endothelin signaling promotes angiogenesis in melanocytic lesions. Targeting the factors upregulated by Edn3 signaling may prove effective in hindering melanoma progression.
Resumo:
Melanomagenesis is influenced by environmental and genetic factors. In normal cells, ultraviolet (UV) induced photoproducts are successfully repaired by the nucleotide excision repair (NER) pathway. Mice carrying mutations in the xeroderma pigmentosum (Xp) complementation group of genes (Xpa-Xpg) lack the NER pathway and are therefore highly sensitive to UV light; however, they do not develop melanoma after UV exposure. In humans, the Endothelin 3 signaling pathway has been linked to melanoma progression and its metastatic potential. Transgenic mice that over-express Edn3 under the control of the Keratin 5 promoter (K5-Edn3) and exhibit a hyperpigmentation phenotype, were crossed with Xp deficient mice. Because melanoma is highly metastatic and many primary malignancies spread via the lymphatic system, analyzing the lymph nodes may serve useful in assessing the possible spread of tumor cells to other tissues. This study aimed to determine whether the over-expression of Edn3 is sufficient to lead to melanoma metastasis to the lymph nodes. Mice were exposed to UV radiation and analyzed for the presence of skin lesions. Mice presenting skin lesions were sacrificed and the nearest lymph nodes were excised and examined for the presence of metastasis. Mice with melanoma skin lesions presented enlarged and hyperpigmented lymph nodes. Diagnosis of melanoma was established by immunostaining with melanocyte and melanoma cell markers, and while UV radiation caused the development of skin lesions in both K5-Edn3 transgenic and control mice, only those mice carrying the K5-Edn3 transgene were found to develop melanoma metastasis to the lymph nodes. These results indicate that over-expression of Edn3 is sufficient to lead to lymph node metastasis in mice exposed to at least one dose of UV radiation.
Resumo:
Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.^
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.