947 resultados para Factor-beta Receptor
Resumo:
In Alzheimer disease (AD), neurons are thought to be subjected to the deleterious cytotoxic effects of activated microglia. We demonstrate that binding of amyloid-beta peptide (Aβ) to neuronal Receptor for Advanced Glycation Endproduct (RAGE), a cell surface receptor for Aβ, induces macrophage-colony stimulating factor (M-CSF) by an oxidant sensitive, nuclear factor κB-dependent pathway. AD brain shows increased neuronal expression of M-CSF in proximity to Aβ deposits, and in cerebrospinal fluid from AD patients there was ≈5-fold increased M-CSF antigen (P < 0.01), compared with age-matched controls. M-CSF released by Aβ-stimulated neurons interacts with its cognate receptor, c-fms, on microglia, thereby triggering chemotaxis, cell proliferation, increased expression of the macrophage scavenger receptor and apolipoprotein E, and enhanced survival of microglia exposed to Aβ, consistent with pathologic findings in AD. These data delineate an inflammatory pathway triggered by engagement of Aβ on neuronal RAGE. We suggest that M-CSF, thus generated, contributes to the pathogenesis of AD, and that M-CSF in cerebrospinal fluid might provide a means for monitoring neuronal perturbation at an early stage in AD.
Resumo:
Thymocytes and thymic dendritic cell (DC) lineages develop simultaneously and may originate from a common intrathymic progenitor. Mice deficient for two growth factor receptor molecules [c-kit and the common cytokine receptor γ chain (γc)] lack all thymocytes including T cell progenitors. Despite this lack of pro-T cells, thymic DC compartments were identified in c-kit−γc− mice. Thus, c-kit- and γc-mediated signals are not essential to generate thymic DCs. In addition, pro-T cells do not appear to be obligatory progenitors of thymic DCs, because DC development is dissociated from the generation of thymocytes in these mice. Thymic DCs in c-kit−γc− mice are phenotypically and functionally normal. In contrast to wild-type mice, however, thymic DCs in c-kit−γc− and, notably, in RAG-2-deficient mice are CD8αneg/low, indicating that CD8α expression on thymic DCs is not independent of thymocytes developing beyond the “RAG-block.”
Resumo:
The tumor necrosis factor-α (TNF-α) promoter was used to explore the molecular mechanisms of estradiol (E2)-dependent repression of gene transcription. E2 inhibited basal activity and abolished TNF-α activation of the TNF-α promoter. The E2-inhibitory element was mapped to the −125 to −82 region of the TNF-α promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) β is more potent than ERα at repressing the −1044 TNF-α promoter and the TNF-RE upstream of the herpes simplex virus thymidine kinase promoter, but weaker at activating transcription through an estrogen response element. The activation function-2 (AF-2) surface in the ligand-binding domain is required for repression, because anti-estrogens and AF-2 mutations impair repression. The requirement of the AF-2 surface for repression is probably due to its capacity to recruit p160 coactivators or related coregulators, because overexpressing the coactivator glucocorticoid receptor interacting protein-1 enhances repression, whereas a glucocorticoid receptor interacting protein-1 mutant unable to interact with the AF-2 surface is ineffective. Furthermore, receptor interacting protein 140 prevents repression by ERβ, probably by interacting with the AF-2 surface and blocking the binding of endogenous coactivators. These studies demonstrate that E2-mediated repression requires the AF-2 surface and the participation of coactivators or other coregulatory proteins.
Resumo:
In mammals, one of the major actions of insulin-like growth factor I (IGF-I) is to increase skeletal growth by stimulating new cartilage formation. IGF-I stimulates chondrocytes in vitro to synthesize new cartilage matrix, measured by enhanced uptake of 35S-sulfate, but the addition of insulin does not produce a similar effect except when added at high concentrations. However, recent studies have shown that, in teleosts, both insulin and IGF-I are potent activators of 35S-sulfate uptake in gill cartilage. To further characterize the growth-promoting activities of these hormones in fish, we have used reverse transcriptase-linked PCR to analyze the expression of insulin receptor family genes in salmon gill cartilage. Partial cDNA sequences encoding the tyrosine kinase domains from six distinct members of the IR gene family were obtained, and sequence comparisons revealed that four of the cDNAs encoded amino acid sequences that were highly homologous to human IR whereas the encoded sequences from two of the cDNAs were more similar to the human type I IGF receptor (IGF-R). Furthermore, a comparative reverse transcriptase-linked PCR assay revealed that the four putative IR mRNAs expressed in toto in gill cartilage were 56% of that found in liver whereas the expressed amount of the two IGF-R mRNAs was 9-fold higher compared with liver. These results suggest that the chondrogenic actions of insulin and IGF-I in fish are mediated by the ligands binding to their cognate receptors. However, further studies will be required to characterize the binding properties and relative contribution of the individual IR and IGF-R genes.
Resumo:
The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.
Resumo:
The increased expression of epidermal growth factor receptor induced by tumor necrosis factor α renders pancreatic cancer cells more susceptible to antibody-dependent cellular cytotoxicity by a mAb specific for this receptor. Laboratory studies with athymic mice bearing xenografts of human pancreatic cancer cells demonstrated a cytokine-induced ability of the mAb to cause significant tumor regression. In a phase I/II clinical trial, 26 patients with unresectable pancreatic cancer were enrolled into three cohorts receiving variable amounts of the antibody together with a constant amount of tumor necrosis factor α. With increasing doses of antibody, the growth of the primary tumor was significantly inhibited. This was reflected by a longer median survival, with one complete remission lasting for 3 years obtained with the highest dose of antibody employed. Thus, a combination of the cytokine, tumor necrosis factor α, with a mAb to the epidermal growth factor receptor offers a potentially useful approach for the treatment of pancreatic cancer.
Resumo:
N-methyl-d-aspartate receptor (NMDAR) activation has been implicated in forms of synaptic plasticity involving long-term changes in neuronal structure, function, or protein expression. Transcriptional alterations have been correlated with NMDAR-mediated synaptic plasticity, but the problem of rapidly targeting new proteins to particular synapses is unsolved. One potential solution is synapse-specific protein translation, which is suggested by dendritic localization of numerous transcripts and subsynaptic polyribosomes. We report here a mechanism by which NMDAR activation at synapses may control this protein synthetic machinery. In intact tadpole tecta, NMDAR activation leads to phosphorylation of a subset of proteins, one of which we now identify as the eukaryotic translation elongation factor 2 (eEF2). Phosphorylation of eEF2 halts protein synthesis and may prepare cells to translate a new set of mRNAs. We show that NMDAR activation-induced eEF2 phosphorylation is widespread in tadpole tecta. In contrast, in adult tecta, where synaptic plasticity is reduced, this phosphorylation is restricted to short dendritic regions that process binocular information. Biochemical and anatomical evidence shows that this NMDAR activation-induced eEF2 phosphorylation is localized to subsynaptic sites. Moreover, eEF2 phosphorylation is induced by visual stimulation, and NMDAR blockade before stimulation eliminates this effect. Thus, NMDAR activation, which is known to mediate synaptic changes in the developing frog, could produce local postsynaptic alterations in protein synthesis by inducing eEF2 phosphorylation.
Resumo:
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.
Resumo:
Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment, suggesting sustained phosphorylation in endocytic compartments. Our results are consistent with a model in which eps15 undergoes cycles of association:dissociation with membranes and suggest multiple roles for this protein in the endocytic pathway.
Resumo:
Members of the transforming growth factor-β (TGF-β) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-β type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-βs in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-βs, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-β-mediated regulation of lateral branching. Loss of responsiveness to TGF-βs in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-βs play an important role in the stromal–epithelial interactions required for branching morphogenesis.
Resumo:
Autocrine motility factor receptor (AMF-R) is a cell surface receptor that is also localized to a smooth subdomain of the endoplasmic reticulum, the AMF-R tubule. By postembedding immunoelectron microscopy, AMF-R concentrates within smooth plasmalemmal vesicles or caveolae in both NIH-3T3 fibroblasts and HeLa cells. By confocal microscopy, cell surface AMF-R labeled by the addition of anti-AMF-R antibody to viable cells at 4°C exhibits partial colocalization with caveolin, confirming the localization of cell surface AMF-R to caveolae. Labeling of cell surface AMF-R by either anti-AMF-R antibody or biotinylated AMF (bAMF) exhibits extensive colocalization and after a pulse of 1–2 h at 37°C, bAMF accumulates in densely labeled perinuclear structures as well as fainter tubular structures that colocalize with AMF-R tubules. After a subsequent 2- to 4-h chase, bAMF is localized predominantly to AMF-R tubules. Cytoplasmic acidification, blocking clathrin-mediated endocytosis, results in the essentially exclusive distribution of internalized bAMF to AMF-R tubules. By confocal microscopy, the tubular structures labeled by internalized bAMF show complete colocalization with AMF-R tubules. bAMF internalized in the presence of a 10-fold excess of unlabeled AMF labels perinuclear punctate structures, which are therefore the product of fluid phase endocytosis, but does not label AMF-R tubules, demonstrating that bAMF targeting to AMF-R tubules occurs via a receptor-mediated pathway. By electron microscopy, bAMF internalized for 10 min is located to cell surface caveolae and after 30 min is present within smooth and rough endoplasmic reticulum tubules. AMF-R is therefore internalized via a receptor-mediated clathrin-independent pathway to smooth ER. The steady state localization of AMF-R to caveolae implicates these cell surface invaginations in AMF-R endocytosis.
Resumo:
In Caenorhabditis elegans, the EGF receptor (encoded by let-23) is localized to the basolateral membrane domain of the epithelial vulval precursor cells, where it acts through a conserved Ras/MAP kinase signaling pathway to induce vulval differentiation. lin-10 acts in LET-23 receptor tyrosine kinase basolateral localization, because lin-10 mutations result in mislocalization of LET-23 to the apical membrane domain and cause a signaling defective (vulvaless) phenotype. We demonstrate that the previous molecular identification of lin-10 was incorrect, and we identify a new gene corresponding to the lin-10 genetic locus. lin-10 encodes a protein with regions of similarity to mammalian X11/mint proteins, containing a phosphotyrosine-binding and two PDZ domains. A nonsense lin-10 allele that truncates both PDZ domains only partially reduces lin-10 gene activity, suggesting that these protein interaction domains are not essential for LIN-10 function in vulval induction. Immunocytochemical experiments show that LIN-10 is expressed in vulval epithelial cells and in neurons. LIN-10 is present at low levels in the cytoplasm and at the plasma membrane and at high levels at or near the Golgi. LIN-10 may function in secretion of LET-23 to the basolateral membrane domain, or it may be involved in tethering LET-23 at the basolateral plasma membrane once it is secreted.
Resumo:
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.
Resumo:
Fibroblast growth factors (FGF) 1 and 2 and their tyrosine kinase receptor (FGFR) are present throughout the adult retina. FGFs are potential mitogens, but adult retinal cells are maintained in a nonproliferative state unless the retina is damaged. Our work aims to find a modulator of FGF signaling in normal and pathological retina. We identified and sequenced a truncated FGFR1 form from rat retina generated by the use of selective polyadenylation sites. This 70-kDa form of soluble extracellular FGFR1 (SR1) was distributed mainly localized in the inner nuclear layer of the retina, whereas the full-length FGFR1 form was detected in the retinal Muller glial cells. FGF2 and FGFR1 mRNA levels greatly increased in light-induced retinal degeneration. FGFR1 was detected in the radial fibers of activated retinal Muller glial cells. In contrast, SR1 mRNA synthesis followed a biphasic pattern of down- and up-regulation, and anti-SR1 staining was intense in retinal pigmented epithelial cells. The synthesis of SR1 and FGFR1 specifically and independently regulated in normal and degenerating retina suggests that changes in the proportion of various FGFR forms may control the bioavailability of FGFs and thus their potential as neurotrophic factors. This was demonstrated in vivo during retinal degeneration when recombinant SR1 inhibited the neurotrophic activity of exogenous FGF2 and increased damaging effects of light by inhibiting endogenous FGF. This study highlights the significance of the generation of SR1 in normal and pathological conditions.
Resumo:
During oocyte maturation in Xenopus, previously quiescent maternal mRNAs are translationally activated at specific times. We hypothesized that the translational recruitment of individual messages is triggered by particular cellular events and investigated the potential for known effectors of the meiotic cell cycle to activate the translation of the FGF receptor-1 (XFGFR) maternal mRNA. We found that both c-mos and cdc2 activate the translation of XFGFR. However, although oocytes matured by injection of recombinant cdc2/cyclin B translate normal levels of XFGFR protein, c-mos depletion reduces the level of XFGFR protein induced by cdc2/cyclin B injection. In oocytes blocked for cdc2 activity, injection of mos RNA induced low levels of XFGFR protein, independent of MAPK activity. Through the use of injected reporter RNAs, we show that the XFGFR 3′ untranslated region inhibitory element is completely derepressed by cdc2 alone. In addition, we identified a new inhibitory element through which both mos and cdc2 activate translation. We found that cdc2 derepresses translation in the absence of polyadenylation, whereas mos requires poly(A) extension to activate XFGFR translation. Our results demonstrate that mos and cdc2, in addition to functioning as key regulators of the meiotic cell cycle, cooperate in the translational activation of a specific maternal mRNA during oocyte maturation.