981 resultados para Export Potential Analysis
Resumo:
Caliciviruses are a major cause of gastroenteritis in humans and cause a wide variety of other diseases in animals. Here, the characterization of protein-protein interactions between the individual proteins of Feline calicivirus (FCV), a model system for other members of the family Caliciviridae, is reported. Using the yeast two-hybrid system combined with a number of other approaches, it is demonstrated that the p32 protein (the picornavirus 2B analogue) of FCV interacts with p39 (2C), p30 (3A) and p76 (3CD). The FCV protease/RNA polymerase (ProPol) p76 was found to form homo-oligomers, as well as to interact with VPg and ORF2, the region encoding the major capsid protein VP1. A weak interaction was also observed between p76 and the minor capsid protein encoded by ORF3 (VP2). ORF2 protein was found to interact with VPg, p76 and VP2. The potential roles of the interactions in calicivirus replication are discussed.
Resumo:
Accurately and reliably identifying the actual number of clusters present with a dataset of gene expression profiles, when no additional information on cluster structure is available, is a problem addressed by few algorithms. GeneMCL transforms microarray analysis data into a graph consisting of nodes connected by edges, where the nodes represent genes, and the edges represent the similarity in expression of those genes, as given by a proximity measurement. This measurement is taken to be the Pearson correlation coefficient combined with a local non-linear rescaling step. The resulting graph is input to the Markov Cluster (MCL) algorithm, which is an elegant, deterministic, non-specific and scalable method, which models stochastic flow through the graph. The algorithm is inherently affected by any cluster structure present, and rapidly decomposes a graph into cohesive clusters. The potential of the GeneMCL algorithm is demonstrated with a 5730 gene subset (IGS) of the Van't Veer breast cancer database, for which the clusterings are shown to reflect underlying biological mechanisms. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
Growth patterns and cropping were evaluated over the season for the everbearing strawberry 'Everest' at a range of temperatures (15-27degreesC) in two light environments (ambient and 50% shade). The highest yield was recorded for unshaded plants grown at 23degreesC, but the optimum temperature for vegetative growth was 15degreesC. With increasing temperature fruit number increased, but fruit weight decreased. Fruit weight was also significantly reduced by shade, and although 'Everest' showed a degree of shade tolerance in vegetative growth, yield was consistently reduced by shade. Shade also reduced the number of crowns developed by the plants over the course of the season, emphasising that crown number was ultimately the limiting factor for yield potential. We conclude that, in contrast to Junebearers which partition more assimilates to fruit at temperatures around 15degreesC (Le Miere et al., 1998), optimised cropping in the everbearer 'Everest' is achieved at the significantly higher temperature of 23degreesC. These findings have significance for commercial production, in which protection tends to reduce light levels but increase average temperature throughout the season.
Resumo:
The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.
Resumo:
Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.
Resumo:
The purpose of this study was to apply and compare two time-domain analysis procedures in the determination of oxygen uptake (VO2) kinetics in response to a pseudorandom binary sequence (PRBS) exercise test. PRBS exercise tests have typically been analysed in the frequency domain. However, the complex interpretation of frequency responses may have limited the application of this procedure in both sporting and clinical contexts, where a single time measurement would facilitate subject comparison. The relative potential of both a mean response time (MRT) and a peak cross-correlation time (PCCT) was investigated. This study was divided into two parts: a test-retest reliability study (part A), in which 10 healthy male subjects completed two identical PRBS exercise tests, and a comparison of the VO2 kinetics of 12 elite endurance runners (ER) and 12 elite sprinters (SR; part B). In part A, 95% limits of agreement were calculated for comparison between MRT and PCCT. The results of part A showed no significant difference between test and retest as assessed by MRT [mean (SD) 42.2 (4.2) s and 43.8 (6.9) s] or by PCCT [21.8 (3.7) s and 22.7 (4.5) s]. Measurement error (%) was lower for MRT in comparison with PCCT (16% and 25%, respectively). In part B of the study, the VO2 kinetics of ER were significantly faster than those of SR, as assessed by MRT [33.4 (3.4) s and 39.9 (7.1) s, respectively; P<0.01] and PCCT [20.9 (3.8) s and 24.8 (4.5) s; P < 0.05]. It is possible that either analysis procedure could provide a single test measurement Of VO2 kinetics; however, the greater reliability of the MRT data suggests that this method has more potential for development in the assessment Of VO2 kinetics by PRBS exercise testing.
Resumo:
Background Epidemiological studies suggest that soy consumption contributes to the prevention of coronary heart disease. The proposed anti-atherogenic effects of soy appear to be carried by the soy isoflavones with genistein as the most abundant compound. Aim of the study To identify proteins or pathways by which genistein might exert its protective activities on atherosclerosis, we analyzed the proteomic response of primary human umbilical vein endothelial cells ( HUVEC) that were exposed to the pro-atherosclerotic stressors homocysteine or oxidized low-density lipoprotein (ox-LDL). Methods HUVEC were incubated with physiological concentrations of homocysteine or ox-LDL in the absence and presence of genistein at concentrations that can be reached in human plasma by a diet rich in soy products (2.5 muM) or by pharmacological intervention ( 25 muM). Proteins from HUVEC were separated by two-dimensional polyacrylamide gel electrophoresis and those that showed altered expression level upon genistein treatment were identified by peptide mass fingerprints derived from tryptic digests of the protein spots. Results Several proteins were found to be differentially affected by genistein. The most interesting proteins that were potently decreased by homocysteine treatment were annexin V and lamin A. Annexin V is an antithrombotic molecule and mutations in nuclear lamin A have been found to result in perturbations of plasma lipids associated with hypertension. Genistein at low and high concentrations reversed the stressor-induced decrease of these anti-atherogenic proteins. Ox-LDL treatment of HUVEC resulted in an increase in ubiquitin conjugating enzyme 12, a protein involved in foam cell formation. Treatment with genistein at both doses reversed this effect. Conclusions Proteome analysis allows the identification of potential interactions of dietary components in the molecular process of atherosclerosis and consequently provides a powerful tool to define biomarkers of response.
Resumo:
Cationic swede and anionic turnip peroxidases were partially purified by ion-exchange and gel-filtration chromatography, respectively. Heat treatment of these enzymes and of a commercial high purity horseradish peroxidase (HRP) caused a loss of enzyme activity and a corresponding increase in linoleic acid hydroperoxide formation activity. The hydroperoxide levels in model systems increased only in the early stages of the oxidation reaction and then declined as degradation became more significant. The presence of a dialysed blend of cooked swede markedly lowered the hydroperoxide level formed. Analysis of volatile compounds formed showed that hexanal predominated in a buffer system and in a blend of cooked turnip. In dialysed blends of cooked swede, hexanol was the primary volatile compound generated. After inactivation under mild conditions in the presence of EDTA, the peroxidases showed hydroperoxide formation activity and patterns of volatile compounds from linoleic acid that were similar to those found on heat-inactivation. This suggested that calcium abstraction from the peroxidases was critical for the enhancement of lipid oxidation activity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Robot-mediated therapies offer entirely new approaches to neurorehabilitation. In this paper we present the results obtained from trialling the GENTLE/S neurorehabilitation system assessed using the upper limb section of the Fugl-Meyer ( FM) outcome measure. Methods: We demonstrate the design of our clinical trial and its results analysed using a novel statistical approach based on a multivariate analytical model. This paper provides the rational for using multivariate models in robot-mediated clinical trials and draws conclusions from the clinical data gathered during the GENTLE/S study. Results: The FM outcome measures recorded during the baseline ( 8 sessions), robot-mediated therapy ( 9 sessions) and sling-suspension ( 9 sessions) was analysed using a multiple regression model. The results indicate positive but modest recovery trends favouring both interventions used in GENTLE/S clinical trial. The modest recovery shown occurred at a time late after stroke when changes are not clinically anticipated. Conclusion: This study has applied a new method for analysing clinical data obtained from rehabilitation robotics studies. While the data obtained during the clinical trial is of multivariate nature, having multipoint and progressive nature, the multiple regression model used showed great potential for drawing conclusions from this study. An important conclusion to draw from this paper is that this study has shown that the intervention and control phase both caused changes over a period of 9 sessions in comparison to the baseline. This might indicate that use of new challenging and motivational therapies can influence the outcome of therapies at a point when clinical changes are not expected. Further work is required to investigate the effects arising from early intervention, longer exposure and intensity of the therapies. Finally, more function-oriented robot-mediated therapies or sling-suspension therapies are needed to clarify the effects resulting from each intervention for stroke recovery.
Resumo:
Increasingly, distributed systems are being used to host all manner of applications. While these platforms provide a relatively cheap and effective means of executing applications, so far there has been little work in developing tools and utilities that can help application developers understand problems with the supporting software, or the executing applications. To fully understand why an application executing on a distributed system is not behaving as would be expected it is important that not only the application, but also the underlying middleware, and the operating system are analysed too, otherwise issues could be missed and certainly overall performance profiling and fault diagnoses would be harder to understand. We believe that one approach to profiling and the analysis of distributed systems and the associated applications is via the plethora of log files generated at runtime. In this paper we report on a system (Slogger), that utilises various emerging Semantic Web technologies to gather the heterogeneous log files generated by the various layers in a distributed system and unify them in common data store. Once unified, the log data can be queried and visualised in order to highlight potential problems or issues that may be occurring in the supporting software or the application itself.
Resumo:
A simple and practical technique for assessing the risks, that is, the potential for error, and consequent loss, in software system development, acquired during a requirements engineering phase is described. The technique uses a goal-based requirements analysis as a framework to identify and rate a set of key issues in order to arrive at estimates of the feasibility and adequacy of the requirements. The technique is illustrated and how it has been applied to a real systems development project is shown. How problems in this project could have been identified earlier is shown, thereby avoiding costly additional work and unhappy users.
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.
Resumo:
Since 1988, there has been, on average, a 91% increase in dissolved organic carbon (DOC) concentrations of UK lakes and streams in the Acid Waters Monitoring Network (AWMN). Similar DOC increases have been observed in surface waters across much of Europe and North America. Much of the debate about the causes of rising DOC has, as in other studies relating to the carbon cycle, focused on factors related to climate change. Data from our peat-core experiments support an influence of climate on DOC, notably an increase in production with temperature under aerobic, and to a lesser extent anaerobic, conditions. However, we argue that climatic factors may not be the dominant drivers of DOC change. DOC solubility is suppressed by high soil water acidity and ionic strength, both of which have decreased as a result of declining sulphur deposition since the 1980s, augmented during the 1990s in the United Kingdom by a cyclical decline in sea-salt deposition. Our observational and experimental data demonstrate a clear, inverse and quantitatively important link between DOC and sulphate concentrations in soil solution. Statistical analysis of 11 AWMN lakes suggests that rising temperature, declining sulphur deposition and changing sea-salt loading can account for the majority of the observed DOC trend. This combination of evidence points to the changing chemical composition of atmospheric deposition, particularly the substantial reduction in anthropogenic sulphur emissions during the last 20 years, as a key cause of rising DOC. The implications of rising DOC export for the carbon cycle will be very different if linked primarily to decreasing acid deposition, rather than to changes in climate, suggesting that these systems may be recovering rather than destabilising.