977 resultados para Exact solution
Resumo:
In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.
In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.
Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.
Resumo:
The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.
The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.
Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.
A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.
A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.
Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.
Resumo:
Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
A simple, direct and accurate method to predict the pressure distribution on supercavitating hydrofoils with rounded noses is presented. The thickness of body and cavity is assumed to be small. The method adopted in the present work is that of singular perturbation theory. Far from the leading edge linearized free streamline theory is applied. Near the leading edge, however, where singularities of the linearized theory occur, a non-linear local solution is employed. The two unknown parameters which characterize this local solution are determined by a matching procedure. A uniformly valid solution is then constructed with the aid of the singular perturbation approach.
The present work is divided into two parts. In Part I isolated supercavitating hydrofoils of arbitrary profile shape with parabolic noses are investigated by the present method and its results are compared with the new computational results made with Wu and Wang's exact "functional iterative" method. The agreement is very good. In Part II this method is applied to a linear cascade of such hydrofoils with elliptic noses. A number of cases are worked out over a range of cascade parameters from which a good idea of the behavior of this type of important flow configuration is obtained.
Some of the computational aspects of Wu and Wang's functional iterative method heretofore not successfully applied to this type of problem are described in an appendix.
Resumo:
Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.
Solar flare particle propagation--comparison of a new analytic solution with spacecraft measurements
Resumo:
A new analytic solution has been obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion with ĸr = constant and ĸƟ ∝ r2. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment aboard OGO-6. Detailed comparisons of the predictions of the new solution with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that ĸr = constant is a better description of conditions inside 1 AU than is ĸr ∝ r. With an outer boundary at 2.7 AU, a solar wind velocity of 400 km/sec, and a radial diffusion coefficient ĸr ≈ 2-8 x 1020 cm2/sec, the model gives reasonable fits to the time-profile of 1-10 MeV protons from "classical" flare-associated events. It is not necessary to invoke a scatter-free region near the sun in order to reproduce the fast rise times observed for directly-connected events. The new solution also yields a time-evolution for the vector anisotropy which agrees well with previously reported observations.
In addition, the new solution predicts that, during the decay phase, a typical convex spectral feature initially at energy To will move to lower energies at an exponential rate given by TKINK = Toexp(-t/ƬKINK). Assuming adiabatic deceleration and a boundary at 2.7 AU, the solution yields ƬKINK ≈ 100h, which is faster than the measured ~200h time constant and slower than the adiabatic rate of ~78h at 1 AU. Two possible explanations are that the boundary is at ~5 AU or that some other energy-change process is operative.
Resumo:
A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.