977 resultados para Eukaryotic Messenger-rnas
Resumo:
Cryptic exons or pseudoexons are typically activated by point mutations that create GT or AG dinucleotides of new 5' or 3' splice sites in introns, often in repetitive elements. Here we describe two cases of tetrahydrobiopterin deficiency caused by mutations improving the branch point sequence and polypyrimidine tracts of repeat-containing pseudoexons in the PTS gene. In the first case, we demonstrate a novel pathway of antisense Alu exonization, resulting from an intronic deletion that removed the poly(T)-tail of antisense AluSq. The deletion brought a favorable branch point sequence within proximity of the pseudoexon 3' splice site and removed an upstream AG dinucleotide required for the 3' splice site repression on normal alleles. New Alu exons can thus arise in the absence of poly(T)-tails that facilitated inclusion of most transposed elements in mRNAs by serving as polypyrimidine tracts, highlighting extraordinary flexibility of Alu repeats in shaping intron-exon structure. In the other case, a PTS pseudoexon was activated by an A>T substitution 9 nt upstream of its 3' splice site in a LINE-2 sequence, providing the first example of a disease-causing exonization of the most ancient interspersed repeat. These observations expand the spectrum of mutational mechanisms that introduce repetitive sequences in mature transcripts and illustrate the importance of intronic mutations in alternative splicing and phenotypic variability of hereditary disorders.
Resumo:
The positive transcription elongation factor (P-TEFb) consists of CDK9, a cyclin-dependent kinase and its cyclin T partner. It is required for transcription of most class II genes. Its activity is regulated by non-coding RNAs. The 7SK cellular RNA turns the HEXIM cellular protein into a P-TEFb inhibitor that binds its cyclin T subunit. Thus, P-TEFb activity responds to variations in global cellular transcriptional activity and to physiological conditions linked to cell differentiation, proliferation or cardiac hypertrophy. In contrast, the Tat activation region RNA plays an activating role. This feature at the 5' end of the human immunodeficiency (HIV) viral transcript associates with the viral protein Tat that in turn binds cyclin T1 and recruits active P-TEFb to the HIV promoter. This results in enhanced P-TEFb activity, which is critical for an efficient production of viral transcripts. Although discovered recently, the regulation of P-TEFb becomes a paradigm for non-coding RNAs that regulate transcription factors. It is also a unique example of RNA-driven regulation of a cyclindependent kinase.
Resumo:
Purpose of the Study: To elucidate the mechanism of homologous recombination and double-strand break repair mediated by the eukaryotic recombination pin, Rad51.
Resumo:
Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4(+) and CD8(+) T cell homeostasis by providing a limited reservoir of survival factors.
Resumo:
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.
Resumo:
Inflammation significantly contributes to the progression of chronic kidney disease (CKD). Inflammasome-dependent cytokines, such as IL-1β and IL-18, play a role in CKD, but their regulation during renal injury is unknown. Here, we analyzed the processing of caspase-1, IL-1β, and IL-18 after unilateral ureteral obstruction (UUO) in mice, which suggested activation of the Nlrp3 inflammasome during renal injury. Compared with wild-type mice, Nlrp3(-/-) mice had less tubular injury, inflammation, and fibrosis after UUO, associated with a reduction in caspase-1 activation and maturation of IL-1β and IL-18; these data confirm that the Nlrp3 inflammasome upregulates these cytokines in the kidney during injury. Bone marrow chimeras revealed that Nlrp3 mediates the injurious/inflammatory processes in both hematopoietic and nonhematopoietic cellular compartments. In tissue from human renal biopsies, a wide variety of nondiabetic kidney diseases exhibited increased expression of NLRP3 mRNA, which correlated with renal function. Taken together, these results strongly support a role for NLRP3 in renal injury and identify the inflammasome as a possible therapeutic target in the treatment of patients with progressive CKD.
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
Erythrokeratodermia variabilis (EKV) is an autosomal dominant keratinization disorder characterized by migratory erythematous lesions and fixed keratotic plaques. All families with EKV show mapping to chromosome 1p34-p35, and mutations in the gene for connexin 31 (Cx31) have been reported in some but not all families. We studied eight affected and three healthy subjects in an Israeli family, of Kurdish origin, with EKV. After having mapped the disorder to chromosome 1p34-p35, we found no mutations in the genes for Cx31, Cx31.1, and Cx37. Further investigation revealed a heterozygous T-->C transition leading to the missense mutation (F137L) in the human gene for Cx30.3 that colocalizes on chromosome 1p34-p35. This nucleotide change cosegregated with the disease and was not found in 200 alleles from normal individuals. This mutation concerns a highly conserved phenylalanine, in the third transmembrane region of the Cx30.3 molecule, known to be implicated in the wall formation of the gap-junction pore. Our results show that mutations in the gene for Cx30.3 can be causally involved in EKV and point to genetic heterogeneity of this disorder. Furthermore, we suggest that our family presents a new type of EKV because of the hitherto unreported association with erythema gyratum repens.
Resumo:
The apical membrane antigen (AMA-1) family of malaria merozoite proteins is characterised by a high degree of inter-species conservation. Evidence that the protein (PK66/AMA-1) from the simian parasite Plasmodium knowlesi was protective in rhesus monkeys suggested that the 83kDa P. falciparum equivalent (PF83/AMA-1) should be investigated for protective effects in humans. Here we briefly review pertinent comparative data, and describe the use of an eukaryotic full length recombinant PF83/AMA-1 molecule to develop a sensitive ELISA for the determination of serological responses in endemic populations. The assay has revealed surprisingly high levels of humoral response to this quantitatively minor antigen. We also show that PK66/AMA-1 inhibitory mAb's are active against merozoites subsequent to release from schizont-infected red cells, further implicating AMA-1 molecules in red cell invasion.
Resumo:
BACKGROUND/AIMS: The Peroxisome Proliferator-Activated Receptor (PPAR) alpha belongs to the superfamily of Nuclear Receptors and plays an important role in numerous cellular processes, including lipid metabolism. It is known that PPARalpha also has an anti-inflammatory effect, which is mainly achieved by down-regulating pro-inflammatory genes. The objective of this study was to further characterize the role of PPARalpha in inflammatory gene regulation in liver. RESULTS: According to Affymetrix micro-array analysis, the expression of various inflammatory genes in liver was decreased by treatment of mice with the synthetic PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. In contrast, expression of Interleukin-1 receptor antagonist (IL-1ra), which was acutely stimulated by LPS treatment, was induced by PPARalpha. Up-regulation of IL-1ra by LPS was lower in PPARalpha -/- mice compared to Wt mice. Transactivation and chromatin immunoprecipitation studies identified IL-1ra as a direct positive target gene of PPARalpha with a functional PPRE present in the promoter. Up-regulation of IL-1ra by PPARalpha was conserved in human HepG2 hepatoma cells and the human monocyte/macrophage THP-1 cell line. CONCLUSIONS: In addition to down-regulating expression of pro-inflammatory genes, PPARalpha suppresses the inflammatory response by direct up-regulation of genes with anti-inflammatory properties.
Resumo:
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.
Resumo:
Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.
Resumo:
Cancer-testis (CT) antigens comprise families of tumor-associated antigens that are immunogenic in patients with various cancers. Their restricted expression makes them attractive targets for immunotherapy. The aim of this study was to determine the expression of several CT genes and evaluate their prognostic value in head and neck squamous cell carcinoma (HNSCC). The pattern and level of expression of 12 CT genes (MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, MAGE-C2, NY-ESO-1, LAGE-1, SSX-2, SSX-4, BAGE, GAGE-1/2, GAGE-3/4) and the tumor-associated antigen encoding genes PRAME, HERV-K-MEL, and NA-17A were evaluated by RT-PCR in a panel of 57 primary HNSCC. Over 80% of the tumors expressed at least 1 CT gene. Coexpression of three or more genes was detected in 59% of the patients. MAGE-A4 (60%), MAGE-A3 (51%), PRAME (49%) and HERV-K-MEL (42%) were the most frequently expressed genes. Overall, the pattern of expression of CT genes indicated a coordinate regulation; however there was no correlation between expression of MAGE-A3/A4 and BORIS, a gene whose product has been implicated in CT gene activation. The presence of MAGE-A and NY-ESO-1 proteins was verified by immunohistochemistry. Analysis of the correlation between mRNA expression of CT genes with clinico-pathological characteristics and clinical outcome revealed that patients with tumors positive for MAGE-A4 or multiple CT gene expression had a poorer overall survival. Furthermore, MAGE-A4 mRNA positivity was prognostic of poor outcome independent of clinical parameters. These findings indicate that expression of CT genes is associated with a more malignant phenotype and suggest their usefulness as prognostic markers in HNSCC.