972 resultados para Ethanol fermentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications of ultrasound were starting from 1912 with the primary objective the detection of icebergs on prevention of maritime accidents. Algae, fish deaths and destruction were observed in the vicinity of sonar that equipped ships and submarines during the First World War.The evolutions of research and studies with ultrasound have big advances following the discovery of piezoelectric transducers in science and technology. As an example we can mention its application in microsurgery, fatigue detection in aerospace mechanics, catalysis sonochemical, biotechnology and others.The work presented here aims to demonstrate the application of ultrasonic in pulsed mode beams in biotechnology with the aim of improving the fermentation of a culture broth containing biological agents. In these experiments we used as ultrasound equipment and oscilator Sonics VCX-600 (20KHz), probe type wave guide. The experiments were conducted in a glass reactor of 200 mL of biomaterial containing cane juice and Saccharomyces cerevisiae in suspension. The parameters analyzed were related to the content Alcohlic (FID gas chromatography), and cell viability (Neubauer chamber), TRS (refractometry). Analysis of results showed that the total production exceeded in irradiated samples compared to normal fermentation (without ultrasound), suggesting additional advantage of ultrasound activation. Lastin Trials 1400 min, showed ethanol production systems 12% more than non-enabled systems. In this context alternatives for ethanol production, bio fuel and many other byproducts of the alcohol industries and chemicals could benefit from the use of ultrasound beams in this range of frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently there is a great quest of producing alcohol from starchy resources, replacing the sugar cane. The most common starchy sources are cassava, maize and sweet potatoes and a lot of research are been realized with excellent results. In this work it was evaluated the influence of the concentration of dry matter on the enzymatic hydrolysis process of starch from sweet potato for ethanol production. Through the sweet potato was produced a flour using a low-cost method and easy operation equipments. The sweet potato flour was characterized physical and chemically and from these results was prepared the treatments for enzymatic hydrolysis. The experimental design considered as independent variable the dry matter concentration of the sweet potato flour in 3 levels; 10, 15 and 20% in the formulation of suspensions. The other variables were keeping constant being: temperature in the 1° hydrolysis step of 90°C and time of 2 hours; temperature in the 2° saccharification step of 60°C and time of 17 hours. The hydrolysates obtained at the three assays were transferred to six liter enlerynmeyer and inoculated with a biologic catalyst, Saccharomyces, dehydrated yeasts of Saccharomyces cerevisiae CAT 1, at a rate of 5% in weight. The flasks were placed in a shaker type orbital with controlled temperature of 30°C during a time of 15 hours. The initial reducer sugars concentration and respective ethanol concentrations in wine were: 11.2% glucose and 2.16% ethanol in the suspension with 10% of dry matter; 13.5% glucose and 4.39% ethanol with 15% and 17.5% glucose and 6.03% ethanol in suspension with 20% of dry matter. ix The results showed that the higher percentage of dry matter carried out to higher sugar yield in hydrolyzed. It was possible observed that products quality improved with a higher concentration of dry matter

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol, the main automotive biofuel, has its production based on the fermentation of sugars found in biological materials and on the distillation of the alcoholic media formed during the fermentative process. Stillage is the main residue from ethanol production, containing a high organic loading in addition to acidic and corrosive characteristics. Considering the available technologies to treat stillage, we highlight anaerobic digestion, which allows the reduction of the impacts associated to pollutants loading of this effluent and the generation of energy from the methane gas produced in the process. Based on the high treatment efficiency usually associated to the anaerobic process, this work aimed to assess whether anaerobic systems applied to the treatment of stillage are energetically self-sufficient. First we evaluated the energy recovery capacity in an anaerobic reactor applied to the treatment of stillage resulting from corn-to-ethanol processing. The results indicated the great influence that a correct selection of electrical equipment and their respective operating periods have on the net energy balance of the anaerobic treatment. The high energy consumption of the heater would not allow the system to achieve a positive net energy balance – the maximum energy recovery would reach only 0.68% of the consumption. However, the replacement of the mixture equipment would result in energy gains ranging from 8.5 to 967.9% of the consumption. In this work we also assessed the efficiency of methane yields for a few studies and the correlation between some parameters of the anaerobic process. With respect to the methane yield, we noted that mesophilic systems tend to be more advantageous than the thermophilic ones (efficiency of 76.45 ± 22.51% vs. 69.40 ± 30.36%). Considering the study... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New patterns from replaceable sources have been searched by scientific community to ethanol produce. The seed of avocado has thereabout 20% of starch. The starch hydrolysis results fermentable sugars by Saccharomyces cerevisiae, and the ethanol is the major product of fermentation. The starch can be hydrolysed by acids, basis and enzymes. Previous studies showed that enzymatic hydrolysis can produce 26,01 liter of ethanol per ton of seed. At the present work, we analyzed the chemistry hydrolysis efficiency before the enzymatic hydrolysis and the use of dormant seed consequence. The Brix rate variation at each stage was evaluated and the ethanol concentration was determined with gas chromatograph technique. The chemistry hydrolysis with subsequent enzymatic hydrolysis was effective, producing until 61,8 L.ton-1. The use of dormant seeds wasn’t significative to raise the Brix rate. The seed of avocado demonstrated to be an alternative replaceable source to ethanol produce

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol production has gained great prominence in the investment new renewable energy sources and Brazil is among the leaders of production. However, this activity generates large amounts of waste being the largest volume of the sugar cane bagasse. For this reason looking up ways to use this material as burning for energy production and composition of forage in the diet of ruminants, however there are difficulties to use this production for this last one. This paper proposes a microbiological treatment with Lentinula edodes and Pleurotus ostreatus in order to enable the bagasse in ruminant feed composition in order to be used more noble than their burning. After treatment with the fungus, tests were performed for quantifying crude protein by the method of Kjeldhal. It was verified that the protein content in the pure bagasse was 1.0% after fermentation the protein content was 4.2% with L.edodes and 4.9% with P. ostreatus. To evaluate the protein quality of the product fermented by L. edodes and P. ostreatus was applied microbiological method for growth of Enterococcus zimogenes verifying that after fermentation the protein quality was 76 and 27.4% with L. edodes and P.ostreatus, respectively, compared with casein. The quantification of amino acids showed significant improvement of protein with altered amino acid profile with treatments of fungos. About of DQO and BOD were also found considerable improvement besides considerable drop in toxicity as measured by acute toxicity test with Daphinia similis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in the oil price and the current trend of using renewable raw materials for the production of chemicals renew the interest in the production of biobutanol that, produced by fermentation of agricultural raw materials, can be used as a component of gasoline and diesel. With the commercialization of new fuels, environmental damages due to spills can occur. Among other techniques, the clean-up of these contaminated areas can be achieved with bioremediation, a technique based on the action of microorganisms, which has the advantage of turning hazardous contaminants into non toxic substances such as CO2, water and biomass. Thus, bearing in mind the use of biobutanol in the near future as a gasoline extender and due to the lack of knowledge of the effects of butanol on the biodegradation of gasoline, this work aimed to assess the aerobic biodegradation of butanol/gasoline blends and butanol/diesel (20% v/v), being the latter compared to the ethanol/gasoline blend and biodiesel/diesel (20% v/v), respectively. Two experimental techniques were employed, namely the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments were carried out in biometer flasks, used to measure the microbial CO2 production. The DCPIP test assessed the capability of four inocula to biodegrade the fuel blends. In butanol/gasoline experiments the addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and...(Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invertases are enzymes which hydrolyze the sucrose and are widely employed in food and pharmaceutical industries. In this work, the screening of autochthonous grape yeasts from Brazil was carried out in order to investigate their invertase production potential. Yeasts belonging to Saccharomyces, Hanseniaspora, Sporidiobolus, Issatchenkia, Candida, Cryptococcus and Pichia genera were analyzed by submerged fermentation (SbmF) using sucrose as substrate. Among them, Candida stellata strain (N5 strain) was selected as the best producer (10.6 U/ml after 48 hours of SbmF). This invertase showed optimal activity at pH 3.0 and 55°C, demonstrating appropriate characters for application in several industrial processes, which includes high temperatures and acid pHs. In addition, this invertase extract presented tolerance to low concentrations of ethanol, suggesting that it could also be suitable for application at the beginning of alcoholic fermentation. These data provide promising prospects of the use of this new invertase in food and ethanol industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)