996 resultados para Erythropoietin Receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The purpose of this study was to examine the effect of synthetic endothelin (ET)-1 peptides with antigenic potential for binding and biologic activity using an in vitro model of microvascular pericytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia results in adaptive changes in the transcription of a range of genes including erythropoietin. An important mediator is hypoxia-inducible factor-1 (HIF-1), a DNA binding complex shown to contain at least two basic helix-loop-helix PAS-domain (bHLH-PAS) proteins, HIF-1 alpha and aryl hydrocarbon nuclear receptor translocator (ARNT), In response to hypoxia, HIF-1 alpha is activated and accumulates rapidly in the cell. Endothelial PAS domain protein 1 (EPAS-1) is a recently identified bHLH-PAS protein with 48% identity to HIF-1 alpha, raising the question of its role in responses to hypoxia. We developed specific antibodies and studied expression and regulation of EPAS-1 mRNA and protein across a range of human cell lines. EPAS-1 was widely expressed, and strongly induced by hypoxia at the level of protein but not mRNA. Comparison of the effect of a range of activating and inhibitory stimuli showed striking similarities in the EPAS-1 and HIF-1 alpha responses. Although major differences were observed in the abundance of EPAS-1 and HIF-1 alpha in different cell types, differences in the inducible response were subtle with EPAS-1 protein being slightly more evident in normoxic and mildly hypoxic cells. Functional studies in a mutant cell line (Ka13) expressing neither HIF-1 alpha nor EPAS-1 confirmed that both proteins interact with hypoxically responsive targets, but suggest target specificity with greater EPAS-1 transactivation (relative to HIF-1 alpha transactivation) of the VEGF promoter than the LDH-A promoter. (C) 1998 by The American Society of Hematology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:
Erythropoietin (EPO) may be protective for early stage diabetic retinopathy, although there are concerns that it could exacerbate retinal angiogenesis and thrombosis. A peptide based on the EPO helix-B domain (helix B-surface peptide [pHBSP]) is nonerythrogenic but retains tissue-protective properties, and this study evaluates its therapeutic potential in diabetic retinopathy.
RESEARCH DESIGN AND METHODS:
After 6 months of streptozotocin-induced diabetes, rats (n = 12) and age-matched nondiabetic controls (n = 12) were evenly split into pHBSP and scrambled peptide groups and injected daily (10 µg/kg per day) for 1 month. The retina was investigated for glial dysfunction, microglial activation, and neuronal DNA damage. The vasculature was dual stained with isolectin and collagen IV. Retinal cytokine expression was quantified using real-time RT-PCR. In parallel, oxygen-induced retinopathy (OIR) was used to evaluate the effects of pHBSP on retinal ischemia and neovascularization (1-30 µg/kg pHBSP or control peptide).
RESULTS:
pHBSP or scrambled peptide treatment did not alter hematocrit. In the diabetic retina, Müller glial expression of glial fibrillary acidic protein was increased when compared with nondiabetic controls, but pHBSP significantly reduced this stress-related response (P < 0.001). CD11b+ microglia and proinflammatory cytokines were elevated in diabetic retina responses, and some of these responses were attenuated by pHBSP (P < 0.01-0.001). pHBSP significantly reduced diabetes-linked DNA damage as determined by 8-hydroxydeoxyguanosine and transferase-mediated dUTP nick-end labeling positivity and also prevented acellular capillary formation (P < 0.05). In OIR, pHBSP had no effect on preretinal neovascularization at any dose.
CONCLUSIONS:
Treatment with an EPO-derived peptide after diabetes is fully established can significantly protect against neuroglial and vascular degenerative pathology without altering hematocrit or exacerbating neovascularization. These findings have therapeutic implications for disorders such as diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10 -5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10 -5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10 -10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We read the interesting research article published by van Nes et al. [1], which described the use of Snail and TWIST together in the prognosis of breast cancer, and in particular in estrogen receptor (ER)-positive breast cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One important mechanism of membrane ion channels regulation involves their non-functional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on TRPM member, TRPM8, which functions as a cold receptor in sensory neurons, but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short-splice variants of TRPM8, termed short TRPM8a (sM8a) and short TRPM8ß (sM8ß). Our results show that both variants are in a closed configuration with the C-terminal tail of the full-size TRPM8 chan-nel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and its activity. Our findings, therefore, uncover a new mode of the regulation of TRPM8 channel by its splice variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient receptor potential (TRP) channels couple various environmental factors to changes in membrane potential, calcium influx, and cell signaling. They also integrate multiple stimuli through their typically polymodal activation. Thus, although the TRPM8 channel has been extensively investigated as the major neuronal cold sensor, it is also regulated by various chemicals, as well as by several short channel isoforms. Mechanistic understanding of such complex regulation is facilitated by quantitative single-channel analysis. We have recently proposed a single-channel mechanism of TRPM8 regulation by voltage and temperature. Using this gating mechanism, we now investigate TRPM8 inhibition in cell-attached patches using HEK293 cells expressing TRPM8 alone or coexpressed with its short sM8-6 isoform. This is compared with inhibition by the chemicals N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide (BCTC) and clotrimazole or by elevated temperature. We found that within the seven-state single-channel gating mechanism, inhibition of TRPM8 by short sM8-6 isoforms closely resembles inhibition by increased temperature. In contrast, inhibition by BCTC and that by clotrimazole share a different set of common features. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.