980 resultados para Enteroaggregative E. coli
Resumo:
Die Bioverkapselung ist eine faszinierende Methode, um biologische Materialien einschlielich Zellen in Siliziumdioxid, Metalloxiden oder hybriden Sol-Gel-Polymeren zu immobilisieren. Bisher wurde nur die Sol-Gel-Vorläufertechnologie genutzt, um Bakterien- oder Hefezellen in Siliziumdioxid zu immobilisieren. Hierfür wurden verschiedene Reagenzien als wässrige Vorläufer getestet, um poly(Silicate) auf Biomolekülen (Bhatia et al., 2000) oder Zellen (Liu und Chen 1999; Coradin und Livage, 2007) zu bilden. Einer der erfolgreichsten bisherigen Methoden verwendet eine Mischung aus Silicaten und kolloidalem Silica. Diese initialen Vorläufer werden durch die Zugabe von Salzsäure neutralisiert, was die Gelbildung fortschreiten lässt und die Verkapselung von Bakterien in einem Silica-Netzwerk zur Folge hat (Nassif et al., 2003). Mit der Entdeckung von Silicatein, einem Enzym, das aus Demospongien isoliert wurde und die Bildung von poly(Silicat) katalysiert, wurde es möglich, poly(Silicat) unter physiologischen Bedingungen zu synthetisieren. Silicatein wurde rekombinant in E. coli hergestellt und ist in der Lage, bei Raumtemperatur, neutralem pH-Wert und in wässrigen Puffersystemen aus Siliziumalkoxiden poly(Silicat) zu bilden (Krasko et al., 2000; Müller et al., 2007b; Zhou et al., 1999). In vivo katalysiert Silicatein die Synthese der Silicathülle der Schwamm-Spiculae (Skelettelemente; Müller et al., 2005b; Müller et al., 2007a; Müller et al., 2007b; Schröder et al., 2007a). Dieses Biosilica wurde in Form von Silica-Nanospheren mit Durchmessern zwischen 100 nm und 250 nm organisiert vorgefunden (Pisera 2003; Tahir et al., 2005). Mit dieser Arbeit konnte gezeigt werden, dass Escherichia coli erfolgreich mit dem Silicatein-Gen transformiert werden kann. Das Level der Proteinexpression kann in Anwesenheit von Isopropyl-β-D-thiogalaktopyranosid (IPTG) effizient erhöht werden, indem man die Bakterienzellen gleichzeitig mit Kieselsäure inkubiert. Dieser Effekt konnte sowohl auf Ebene der Synthese des rekombinanten Proteins durch Western Blot als auch durch Immunfluoreszenzmikroskopie nachgewiesen werden. Das heterolog produzierte Silicatein besitzt enzymatische Aktivität und kann die Polymerisation von Kieselsäure katalysieren. Dies konnte sowohl durch Färbung mit Rhodamin123, als auch durch Reaktion der nicht polymerisierten, freien Kieselsäure mit dem ß-Silicomolybdato-Farbsystem (Silicomolybdänblau) nachgewiesen werden. Elektronenmikroskopische Untersuchungen zeigten, dass nur die silicateinexprimierenden Bakterien während des Wachstums in Anwesenheit von Kieselsäure eine viskose Hülle um Zelle herum bilden. Ebenfalls konnte gezeigt werden, dass Silicatein-α aus Suberites domuncula nach Transformation in E. coli an die Zelloberfläche dieser Zellen transportiert wurde und dort seine enzymatische Funktion beibehielt. Die Silicathülle wurde mittels Raster-Elektronenmikroskopie (REM) analysiert. Die Bakterien, die Silicatein exprimierten und poly(Silicat) an ihrer Oberfläche synthetisierten, zeigten die gleichen Wachstumsraten wie die Bakterien, die das Gen nicht enthielten. Schlussfolgernd lässt sich sagen, dass die silicateinvermittelte Verkapselung von Bakterien mit poly(Silicat) die Bandbreite der Anwendung von Bakterien für die Produktion von rekombinanten Proteinen verbessern, erweitern und optimieren könnte.
Resumo:
E. coli ist in der Lage unter aeroben sowie anaeroben Bedingungen C4-Dicarbonsäuren zur Energiekonservierung zu nutzen. Das DcuS/DcuR-Zweikomponentensystem detektiert diese und reguliert die Gene für den C4-Dicarboxylat-Transport und Metabolismus. Dabei hängt die Sensitivität der Sensorkinase DcuS für C4-Dicarbonsäuren von der Anwesenheit des aeroben Symporters DctA oder des anaeroben Antiporters DcuB ab. Diese bifunktionalen Transporter bilden mit DcuS über direkte Protein-Protein-Wechselwirkungen Sensoreinheiten. In dieser Arbeit wurden die Funktionen von DctA und DcuS im DctA/DcuS-Sensorkomplex analysiert. Mit DctA(S380D) wurde eine Variante des Transporters identifiziert, in der die regulatorische Eigenschaft von der katalytischen Funktion entkoppelt ist. Stämme von E. coli, die den DctA(S380D)/DcuS-Sensorkomplex enthielten, waren in der Lage C4-Dicarbonsäuren wahrzunehmen, obwohl die Transportfunktion von DctA inaktiviert war. Zudem wurden Unterschiede in den Substratspektren von DctA und DcuS festgestellt. Citrat, ein guter Effektor des DctA/DcuS-Sensorkomplexes, wurde durch DctA nicht gebunden oder transportiert. Anhand von Titrationsexperimenten mit variierenden DctA-Mengen wurde außerdem nachgewiesen, dass die Sensitivität von DcuS für seine Effektoren von der DctA-Konzentration abhängig ist. Es konnte gezeigt werden, dass DctA im DctA/DcuS-Sensorkomplex nicht an der Erkennung von C4-Dicarbonsäuren beteiligt ist. DcuS stellt die Signaleingangsstelle des Komplexes dar, während DctA durch seine Anwesenheit die Sensorkinase in eine funktionsbereite oder sensitive Form überführt, die auf Effektoren reagieren kann. Darüber hinaus wurde die Rolle der Transmembranhelices TM1 und TM2 von DcuS für die Funktion und Dimerisierung der Sensorkinase untersucht. Durch Sequenzanalysen wurden „SmallxxxSmall“-Motive, deren Relevanz als Dimerisierungsschnittstellen bereits in Transmembranhelices anderer Proteine nachgewiesen wurde, in TM1 sowie TM2 identifiziert. Die Homodimerisierung beider Transmembrandomänen wurde im GALLEX Two-Hybrid System nachgewiesen, wobei die TM2-TM2-Interaktion stärker war. Die Substitution G190A/G194A im SxxxGxxxG-Tandemmotiv von TM2 rief zudem einen deutlichen Funktionsverlust der Sensorkinase hervor. Dieser Aktivitätsverlust korrelierte mit Störungen der Homodimerisierung von TM2(G190A/G194A) sowie DcuS(G190A/G194A) bei bakteriellen Two-Hybrid Messungen im GALLEX- bzw. BACTH-System. Demzufolge agiert Transmembranhelix 2 mit seinem SxxxGxxxG-Sequenzmotiv als wesentliche Homodimerisierungsstelle in DcuS. Die Dimerisierung von DcuS ist essentiell für die Funktion der Histidinkinase. Zusätzlich wurde bei fluoreszenzmikroskopischen Studien durch Koexpression von DcuS bzw. DctA die zelluläre Kolokalisierung von DctA und DcuR mit DcuS sowie DauA mit DctA nachgewiesen. Die DctA/DcuS-Sensoreinheit kann demnach zum DauA/DctA/DcuS/DcuR-Komplex erweitert werden.
Resumo:
Escherichia coli kann unter aeroben und anaeroben Bedingungen mit C4-Dicarboxylaten wachsen, die Regulation des Stoffwechsels erfolgt durch das Zwei-Komponenten-System DcuSR. Die C4-Dicarboxylattransporter DctA (aerob) bzw. DcuB (anaerob) agieren als Co-Regulatoren und bilden gemeinsam mit der Sensor-Histidinkinase DcuS einen Sensorkomplex, in dem DcuS den Sensor darstellt und DctA bzw. DcuB diesen in seine rezeptive Form überführen. DcuS ist membranständig und verknüpft die Bindung von C4-Dicarboxylaten im Periplasma mit der Autophosphorylierung seiner Kinasedomäne im Cytoplasma. Dies stellt den Beginn einer Signalkaskade vom extrazellulären Reiz zum cytoplasmatischen Responseregulator DcuR dar.rnIn dieser Arbeit wurde die intramolekulare Signaltransduktion in DcuS und über die Membran untersucht. Der Fokus lag auf der Funktion der beiden Transmembranhelices TM1 und TM2 und der cytoplasmatischen PAS-Domäne, die die sensorische PASp- mit der effektorischen Kinasedomäne verbinden. Konformationsänderungen dieser Signalweiterleitung wurden durch Cysteinzugänglichkeitsstudien, oxidatives Cystein-Crosslinking und Mutageneseexperimente analysiert. rnTM2 wurde als der Überträger eines transmembranen Signals identifiziert, während TM1 als Membrananker fungiert. Der aktive Signalzustand von TM2 wird unabhängig von der Art der DcuS-Aktivierung (Effektorbindung, Deletion des Co-Regulators DctA oder PASc-ON-Mutationen) eingenommen. Der Signaltransduktion liegt eine Verschiebung von TM2 entlang ihrer Längsachse (Kolbenhub) in Richtung Periplasma zu Grunde. Cystein-Crosslinking offenbarte eine durchgehende Helix aus PASp-α6 und TM2, die im Dimer parallel mit ihrem Pendant verschoben wird. Die Amplitude des Kolbenhubs wurde anhand von Zugänglichkeitsveränderungen, der Lage verankernder Tryptophanreste, Strukturvergleichen und energetischen Berechnungen auf max. 4 - 6 Å festgelegt. Sie ist von der Effektorstärke abhängig und koppelt so die metabolische Bevorzugung einzelner Substrate an das Ausmaß des Kolbenhubs und der Genexpression. Für die cytoplasmatische PAS-Domäne wurde ein Zusammenhang zwischen lokaler Dimerisierung und Kontrolle der Sensorfunktion nachgewiesen. Schwächung der Dimerisierung führt zu einer Aktivierung der Sensorkinase. Es wurde eine hydrophobe Region identifiziert, deren strukturelle Integrität für diese Dimerisierung essentiell ist. Mit N248 wurde ein funktionell bedeutender Rest beschrieben, der auf Grund seiner Lage und seiner Eigenschaft mehrere Sekundärstrukturelemente zu verknüpfen, als Scharnier innerhalb der Domäne an der Umsetzung des Kolbenhubs in eine veränderte Quartärstruktur von PASc beteiligt sein könnte.
Resumo:
Aquaporine sind hochselektive Transmembrankanäle, die in allen Lebensformen den Fluss von Wasser und kleinen, polaren Molekülen wie Glycerol über Lipidmembranen ermöglichen. Obwohl die Kanalpore für den Substratfluss im Monomer lokalisiert ist, liegen Aquaporine innerhalb biologischer Membranen als Homotetramere vor. Im Rahmen dieser Arbeit wurden proteinbezogene und lipidmembranassoziierte Einflüsse auf die Oligomerisierung und Funktion des bakteriellen Aquaglyceroporins GlpF sowohl in vitro als auch in vivo untersucht. rnDie erhöhte Stabilität der Aquaporinpore sowie Interaktion zwischen den GlpF-Monomeren sind Triebkräfte der Aquaporin-Tetramerisierung. Ferner erfordern die GlpF-Tetramerisierung und -Aktivität bei Abschirmung der Ladung anionischer Lipide und einer minimalen Membrandicke von 27 Å keine spezielle Lipidumgebung. Da anionische Lipide die GlpF-Funktion jedoch störten, kann die GlpF-Aktivität in vivo möglicherweise durch die selektive Anreicherung von anionischen Lipiden in der unmittelbaren Proteinumgebung reguliert werden. Ungünstige Lipid-GlpF-Interaktionen können jedoch in Lipidumgebungen mit hoher Ordnung in der Acylkettenregion entstehen, die zu einer Aggregation der GlpF-Tetramere und reduzierten Aktivität führen. rnFerner wurde die Auswirkung der nephrogenen Diabetes insipidus verursachenden Aquaporin 2-Punktmutation V71M auf die Oligomerisierung und Funktion des homologen, bakteriellen Aquaglyceroporins GlpF untersucht. Da weder die Oligomierisierung noch die Aktivität des homologen, bakteriellen Aquaglyceroporins eingeschränkt sind, beruht der Krankheitsmechanismus der Aquaporin 2-Mutante V71M vermutlich auf einem defekten Transportmechansimus im Menschen. rn
Resumo:
I lantibiotici sono molecole peptidiche prodotte da un gran numero di batteri Gram-positivi, posseggono attività antibatterica contro un ampio spettro di germi, e rappresentano una potenziale soluzione alla crescente problematica dei patogeni multi-resistenti. La loro attività consiste nel legame alla membrana del bersaglio, che viene quindi destabilizzata mediante l’induzione di pori che determinano la morte del patogeno. Tipicamente i lantibiotici sono formati da un “leader-peptide e da un “core-peptide. Il primo è necessario per il riconoscimento della molecola da parte di enzimi che effettuano modifiche post-traduzionali del secondo - che sarà la regione con attività battericida una volta scissa dal “leader-peptide. Le modifiche post-traduzionali anticipate determinano il contenuto di amminoacidi lantionina (Lan) e metil-lantionina (MeLan), caratterizzati dalla presenza di ponti-tioetere che conferiscono maggior resistenza contro le proteasi, e permettono di aggirare la principale limitazione all’uso dei peptidi in ambito terapeutico. La nisina è il lantibiotico più studiato e caratterizzato, prodotto dal batterio L. lactis che è stato utilizzato per oltre venti anni nell’industria alimentare. La nisina è un peptide lungo 34 amminoacidi, che contiene anelli di lantionina e metil-lantionina, introdotti dall’azione degli enzimi nisB e nisC, mentre il taglio del “leader-peptide è svolto dall’enzima nisP. Questo elaborato affronta l’ingegnerizzazione della sintesi e della modifica di lantibiotici nel batterio E.coli. In particolare si affronta l’implementazione dell’espressione eterologa in E.coli del lantibiotico cinnamicina, prodotto in natura dal batterio Streptomyces cinnamoneus. Questo particolare lantibiotico, lungo diciannove amminoacidi dopo il taglio del leader, subisce modifiche da parte dell’enzima CinM, responsabile dell’introduzione degli aminoacidi Lan e MeLan, dell’enzima CinX responsabile dell’idrossilazione dell’acido aspartico (Asp), e infine dell’enzima cinorf7 deputato all’introduzione del ponte di lisinoalanina (Lal). Una volta confermata l’attività della cinnamicina e di conseguenza quella dell’enzima CinM, si è deciso di tentare la modifica della nisina da parte di CinM. A tal proposito è stato necessario progettare un gene sintetico che codifica nisina con un leader chimerico, formato cioè dalla fusione del leader della cinnamicina e del leader della nisina. Il prodotto finale, dopo il taglio del leader da parte di nisP, è una nisina completamente modificata. Questo risultato ne permette però la modifica utilizzando un solo enzima invece di due, riducendo il carico metabolico sul batterio che la produce, e inoltre apre la strada all’utilizzo di CinM per la modifica di altri lantibiotici seguendo lo stesso approccio, nonché all’introduzione del ponte di lisinoalanina, in quanto l’enzima cinorf7 necessita della presenza di CinM per svolgere la sua funzione.
Resumo:
In questa tesi viene presentato un bioreattore in grado di mantenere nel tempo condizioni biologiche tali che consentano di massimizzare i cicli di evoluzione molecolare di vettori di clonazione fagici: litico (T7) o lisogeno (M13). Verranno quindi introdtti concetti legati alla Teoria della Quasispecie e alla relazione tra errori di autoreplicazione e pressioni selettive naturali o artificiali su popolazioni di virus: il modello naturale del sistema evolutivo. Tuttavia, mantenere delle popolazioni di virus significa formire loro un substrato dove replicare. Per fare ciò, altri gruppi di ricerca hanno giá sviluppato complessi e costosi prototipi di macchinari per la crescita continua di popolazioni batteriche: i compartimenti dei sistemi evolutivi. Il bioreattore, oggetto di questo lavoro, fa parte del progetto europeo Evoprog: general purpose programmable machine evolution on a chip (Jaramillo’s Lab, University of Warwick) che, utilizzando tecnologie fagiche e regolazioni sintetiche esistenti, sará in grado di produrre funzionalità biocomputazionali di due ordini di grandezza più veloci rispetto alle tecniche convenzionali, riducendo allo stesso tempo i costi complessivi. Il primo prototipo consiste in uno o piú fermentatori, dove viene fatta crescere la cultura batterica in condizioni ottimizzate di coltivazione continua, e in un cellstat, un volume separato, dove avviene solo la replicazione dei virus. Entrambi i volumi sono di pochi millilitri e appropriatamente interconnessi per consentire una sorta di screening continuo delle biomolecole prodotte all’uscita. Nella parte finale verranno presentati i risultati degli esperimenti preliminari, a dimostrazione dell’affidabilità del prototipo costruito e dei protocolli seguiti per la sterilizzazione e l’assemblaggio del bioreattore. Gli esperimenti effettuati dimostrano il successo di due coltivazioni virali continue e una ricombinazione in vivo di batteriofagi litici o lisogeni ingegnerizzati. La tesi si conclude valutando i futuri sviluppi e i limiti del sistema, tenendo in considerazione, in particolare, alcune applicazioni rivolte agli studi di una terapia batteriofagica.
Resumo:
The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.
Resumo:
To obtain crystals of the Escherichia coli catabolite gene activator protein (CAP) complexed with its DNA-binding site, we have searched for crystallization conditions with 26 different DNA segments ≥28 base-pairs in length that explore a variety of nucleotide sequences, lengths, and extended 5′ or 3′ termini. In addition to utilizing uninterrupted asymmetric lac site sequences, we devised a novel approach of synthesizing half-sites that allowed us to efficiently generate symmetric DNA segments with a wide variety of extended termini and lengths in the large size range (≥28 bp) required by this protein. We report three crystal forms that are suitable for X-ray analysis, one of which (crystal form III) gives measurable diffraction amplitudes to 3 Å resolution. Additives such as calcium, n-octyl-β-d-glucopyranoside and spermine produce modest improvements in the quality of diffraction from crystal form III. Adequate stabilization of crystal form III is unexpectedly complex, requiring a greater than tenfold reduction in the salt concentration followed by addition of 2-methyl-2,4-pentanediol and then an increase in the concentration of polyethylene glycol.
Resumo:
The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers). One low-glower had a transposon insertion in the comR gene, which encodes a TetR-like transcriptional regulator. The mutant strain could be complemented by the comR gene on a plasmid, restoring luminescence to wild-type levels. ComR did not regulate its own expression, but was required for copper-induction of the neighboring, divergently transcribed comC gene, as shown by real-time quantitative PCR and with a promoter-lux fusion. The purified ComR regulator bound to the promoter region of the comC gene in vitro and was released by copper. By membrane fractionation, ComC was shown to be localized in the outer membrane. When grown in the presence of copper, ∆comC cells had higher periplasmic and cytoplasmic copper levels, compared to the wild-type, as assessed by the activation of the periplasmic CusRS sensor and the cytoplasmic CueR sensor, respectively. Thus, ComC is an outer membrane protein which lowers the permeability of the outer membrane to copper. The expression of ComC is controlled by ComR, a novel, TetR-like copper-responsive repressor.
Resumo:
The glucose transporter IICB of the Escherichia coli phosphotransferase system (PTS) consists of a polytopic membrane domain (IIC) responsible for substrate transport and a hydrophilic C-terminal domain (IIB) responsible for substrate phosphorylation. We have overexpressed and purified a triple mutant of IIC (mut-IIC), which had recently been shown to be suitable for crystallization purposes. Mut-IIC was homodimeric as determined by blue native-PAGE and gel-filtration, and had an eyeglasses-like structure as shown by negative-stain transmission electron microscopy (TEM) and single particle analysis. Glucose binding and transport by mut-IIC, mut-IICB and wildtype-IICB were compared with scintillation proximity and in vivo transport assays. Binding was reduced and transport was impaired by the triple mutation. The scintillation proximity assay allowed determination of substrate binding, affinity and specificity of wildtype-IICB by a direct method. 2D crystallization of mut-IIC yielded highly-ordered tubular crystals and made possible the calculation of a projection structure at 12Å resolution by negative-stain TEM. Immunogold labeling TEM revealed the sidedness of the tubular crystals, and high-resolution atomic force microscopy the surface structure of mut-IIC. This work presents the structure of a glucose PTS transporter at the highest resolution achieved so far and sets the basis for future structural studies.
Resumo:
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to adhere to and invade intestinal epithelial cells (IEC), and to survive within macrophages. The interaction of AIEC with IEC depends on bacterial factors mainly type 1 pili, flagella, and outer membrane proteins. In humans, proteases can act as host defence mechanisms to counteract bacterial colonization. The protease meprin, composed of multimeric complexes of the two subunits alpha and beta, is abundantly expressed in IECs. Decreased levels of this protease correlate with the severity of the inflammation in patients with inflammatory bowel disease. The aim of the present study was to analyze the ability of meprin to modulate the interaction of AIEC with IECs. In patients with ileal CD we observed decreased levels of meprins, in particular that of meprin β. Dose-dependent inhibition of the abilities of AIEC strain LF82 to adhere to and invade intestinal epithelial T84 cells was observed when bacteria were pre-treated with both exogenous meprin α and meprin β. Dose-dependent proteolytic degradation of type 1 pili was observed in the presence of active meprins, but not with heat-inactivated meprins, and pretreatment of AIEC bacteria with meprins impaired their ability to bind mannosylated host receptors and led to decreased secretion of the pro-inflammatory cytokine IL-8 by infected T84 cells. Thus, decreased levels of protective meprins as observed in CD patients may contribute to increased AIEC colonization.
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.
Resumo:
The aim of this study was to determine the potential association between housing type and multiple drug resistance (MDR) in Escherichia coli and Enterococcus faecalis isolates recovered from 283 laying-hen flocks. In each flock, a cloacal swab from four hens was collected and produced 1102 E. coli and 792 E. faecalis isolates. Broth microdilution was used to test susceptibility to antimicrobials. Country and housing type interacted differently with the MDR levels of both species. In the E. coli model, housing in a raised-floor system was associated with an increased risk of MDR compared to the conventional battery system [ odds ratio (OR) 2.12, 95% confidence interval (CI) 1.13-3.97)]. In the E. faecalis model the MDR levels were lower in free-range systems than in conventional battery cages (OR 0.51, 95% CI 0.27-0.94). In Belgium, ceftiofur-resistant E. coli isolates were more numerous than in the other countries.