977 resultados para Endocytic Membrane Transport
Resumo:
Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.
Resumo:
Sarcopromusca pruna appears to be the predominant transport host for Dermatobia hominis eggs among cattle herds in central eastern Bahia, Brazil. In the study area, two seasonal peaks of S. Pruna abundance coincide with those of Dermatobia, from mid July through late September and from mid November until early January, two periods of moderate monthly rainfall between anual extremes. Among more than 26,000 flies examined during the study, 75 (all female S. pruna) bore Dermatobia eggs. Certain aspects of Dermatobia behavior and ovoposition habits in the field are also discussed.
Resumo:
The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.
Resumo:
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.
Resumo:
Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76) were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page). Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.
Resumo:
Rapport de synthèse : Le récepteur activé par protéase de type 2 (PAR2) intervient dans l'inflammation dans divers modèles expérimentaux de maladies inflammatoires et auto-immunes, mais le mécanisme par lequel il exerce cette fonction reste mal compris. PAR2 est exprimé sur des cellules endothéliales et immunitaires et a été impliqué dans la différentiation des cellules dendritiques (DC). Avec leur rôle central dans la réponse immune, les DC pourraient jouer un rôle clef, l'activation de PAR2 à leur surface modulant la réponse immune. Des recherches précédentes ont montré que PAR2 a un effet dans le développement et la maturation des DC de moelle osseuse in vitro, ainsi que dans la promotion de la réponse immune en allergie. Dans cette étude, nous avons évalué l'impact in vivo de l'activation de PAR2 sur les DC et les cellules T dans des souris déficientes en PAR2 (KO) en utilisant un peptide agoniste spécifique du PAR2 (AP2). L'activation de PAR2 a augmenté la fréquence de DC matures dans les ganglions lymphatiques 24 heures après l'administration d'AP2 d'une manière significative. En outre, ces DC avaient une expression augmentée des molécules de co-stimulation CD86 et du complexe majeur d'histocompatibilité type 2 (MHC-II). 48 heures après l'injection d'AP2, nous avons également observé une élévation significative des lymphocytes T CD4+ et CD8+ activés, (CD44+CD62-) dans ces ganglions. Des changements dans le profil d'activation des DC et des cellules T n'ont pas été observés au niveau de a rate. L'influence de la signalisation de PAR2 sur le transport d'antigène aux ganglions lymphatiques inguinaux a été évaluée dans le contexte d'hypersensibilité retardée de type IV. Les souris KO sensibilisées par peinture de la peau avec fluorescéine isothyocyanate (FITC) afin d'induire une hypersensibilité retardée avaient un pourcentage diminué de DC FITC+ dans les ganglions lymphatiques 24 heures après l'application du FITC en comparaison avec les souris sauvages avec le même fond génétique (0.47% vs 0.95% des cellules ganglionnaires totales). En conclusion, ces résultats démontrent que la signalisation de PAR2 favorise et renforce la maturation et le transport d'antigène par des DC .vers les ganglions lymphatiques ainsi que l'activation ultérieure des lymphocytes T, et de ce fait fournissent une explication pour l'effet pro inflammatoire de PAR2 dans les modèles animaux d'inflammation. Une meilleure compréhension de ce mécanisme de modulation du système immun via PAR2 peut s'avérer particulièrement utile pour le développement des vaccins, ainsi que pour la découverte de nouvelles cibles thérapeutiques dans le contexte de l'allergie, l'auto-immunité, et les maladies inflammatoires.
Resumo:
The author investigated the distribution of lectin receptors on Trypanosoma cruzi blood forms collected from mice inoculated with, respectively, the drug-resistant and drug-sensitive strains VL-10 and CL, and treated with the two standard active nitroheterocyclic compounds nifurtimox and benznidazole used for treatment of human Chagas' disease. Blood trypomastigotes purified in Fycoll-Hypaque were incubated with fluorescein-labelled lectins Con A, WGA, EE, WFA, TPA and PNA and then microscopically examined. Neither qualitative or quantitative differences in the fluorescence intensity could be detected between parasites from VL-10 and CL strains submitted or not to treatment. The results suggest that both strains do not differ in their surface membrane carbohydrate moieties. Moreover, the rapid clearance of blood forms the drug-sensitive strain in animals treated with singlo doses of both compounds is not likely to depend on membrane alterations expressed by changes in the carbohydrate components. furthermore, resistance or sensitivity to drugs is not apparently related to carbohydrate distribution on T. cruzi blood forms.
Resumo:
The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVβ3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.
Resumo:
PECUBE is a three-dimensional thermal-kinematic code capable of solving the heat production-diffusion-advection equation under a temporally varying surface boundary condition. It was initially developed to assess the effects of time-varying surface topography (relief) on low-temperature thermochronological datasets. Thermochronometric ages are predicted by tracking the time-temperature histories of rock-particles ending up at the surface and by combining these with various age-prediction models. In the decade since its inception, the PECUBE code has been under continuous development as its use became wider and addressed different tectonic-geomorphic problems. This paper describes several major recent improvements in the code, including its integration with an inverse-modeling package based on the Neighborhood Algorithm, the incorporation of fault-controlled kinematics, several different ways to address topographic and drainage change through time, the ability to predict subsurface (tunnel or borehole) data, prediction of detrital thermochronology data and a method to compare these with observations, and the coupling with landscape-evolution (or surface-process) models. Each new development is described together with one or several applications, so that the reader and potential user can clearly assess and make use of the capabilities of PECUBE. We end with describing some developments that are currently underway or should take place in the foreseeable future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Human amniotic interferon was investigated to define the species specificity of its antiviral action and compare its anti-cellular and NK cell stimulating activities with those of other human interferons. The antiviral effect was titrated in bovine (RV-IAL) and monkey (VERO) cells. Amniotic interferon exhibited, in bovine cells, 5% of the activity seen in monkey cells, while alpha interferon displayed 200%. No effect was detected with either beta or gamma interferon in bovine cells. Daudi cells were exposed to different concentrations of various interferons and the cell numbers were determined. The anticellular effect of the amniotic interferon reached its peak on the third day of incubation. Results suggested a higher activity for alpha and gamma interferons and a lower activity for beta when compared to amniotic interferon. Using total mononuclear cells as effector cells and K 562 as target cell in a 51Cr release assay, it was demonstrated that low concentrations of amniotic interferon consistently stimulated NK cell activity in cells derived from several donors, the results indicating a higher level of activity with this interferon than with alpha and beta interferons.
Resumo:
We demonstrate that the cccB gene, identified in the Bacillus subtilis genome sequence project, is the structural gene for a 10-kDa membrane-bound cytochrome c(551) lipoprotein described for the first time in B. subtilis. Apparently, CccB corresponds to cytochrome c(551) of the thermophilic bacterium Bacillus PS3. The heme domain of B. subtilis cytochrome c(551) is very similar to that of cytochrome c(550), a protein encoded by the cccA gene and anchored to the membrane by a single transmembrane polypeptide segment. Thus, B. subtilis contains two small, very similar, c-type cytochromes with different types of membrane anchors. The cccB gene is cotranscribed with the yvjA gene, and transcription is repressed by glucose. Mutants deleted for cccB or yvjA-cccB show no apparent growth, sporulation, or germination defect. YvjA is not required for the synthesis of cytochrome c(551), and its function remains unknown.
Resumo:
The plant immune system relies to a great extent on the highly regulated expression of hundreds of defense genes encoding antimicrobial proteins, such as defensins, and antiherbivore proteins, such as lectins. The expression of many of these genes is controlled by a family of mediators known as jasmonates; these cyclic oxygenated fatty acid derivatives are reminiscent of prostaglandins. The roles of jasmonates also extend to the control of reproductive development. How are these complex events regulated? Nearly 20 members of the jasmonate family have been characterized. Some, like jasmonic acid, exist in unmodified forms, whereas others are conjugated to other lipids or to hydrophobic amino acids. Why do so many chemically different forms of these mediators exist, and do individual jasmonates have unique signaling properties or are they made to facilitate transport within and between cells? Key features of the jasmonate signal pathway have been identified and include the specific activation of E3-type ubiquitin ligases thought to target as-yet-undescribed transcriptional repressors for modification or destruction. Several classes of transcription factor are known to function in the jasmonate pathway, and, in some cases, these proteins provide nodes that integrate this network with other important defensive and developmental pathways. Progress in jasmonate research is now rapid, but large gaps in our knowledge exist. Aimed to keep pace with progress, the ensemble of jasmonate Connections Maps at the Signal Transduction Knowledge Environment describe (i) the canonical signaling pathway, (ii) the Arabidopsis signaling pathway, and (iii) the biogenesis and structures of the jasmonates themselves.