939 resultados para Electric currents.
Resumo:
The distribution of natural gas is carried out by means of long ducts and intermediate compression stations to compensate the pressure drops due to friction. The natural gas compressors are usually driven by an electric motor or a gas turbine system, offering possibilities for energy management, one of these consisting in generating energy for use in-plant or to commercialize as independent power producer. It can be done by matching the natural gas demand, at the minimum pressure allowed in the reception point, and the storage capacity of the feed duct with the maximum compressor capacity, for storing the natural gas at the maximum permitted pressure. This allows the gas turbine to drive an electric generator during the time in which the decreasing pressure in duct is above the minimum acceptable by the sink unit. In this paper, a line-pack management analysis is done for an existing compression station considering its actual demand curve for determining the economic feasibility of maintaining the gas turbine system driver generating electricity in a peak and off-peak tariff structure. The potential of cost reduction from the point of view of energy resources (natural gas and electric costs) is also analyzed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work analyses the waveshapes of continuing currents and parameters of M-components in positive cloud-to-ground (CG) flashes through high-speed GPS synchronized videos. The dataset is composed of only long continuing currents (with duration longer than 40 ms) and was selected from more than 800 flashes recorded in Sao Jose dos Campos (45.864 degrees W, 23.215 degrees S) and Uruguaiana (29.806 degrees W, 57.005 degrees S) in Southeast and South of Brazil, respectively, during 2003 to 2007 summers. The videos are compared with data obtained by the Brazilian Lightning Location System (BrasilDAT) in order to determine the polarity of each flash and select only positive cases. There are only two studies of waveshapes of continuing currents in the literature. One is based on direct current measurements of triggered lightning, in which four different types of waveshapes were observed; and the other is based on measurements of luminosity variations in high-speed videos of CG negative lightning, in which besides the four types above mentioned two additional types were observed. The present work is an extension of the latter, using the same method but now applied to obtain the waveshapes of positive CG lightning. As far as the authors know, this is the first report on M-components in positive continuing currents. We also have used the luminosity-versus-time graphs to observe their occurrence and measure some parameters (duration, elapsed time and time between two successive M-components), whose statistics are presented and compared in detail to the data for negative flashes. We have plotted a histogram of the M-components elapsed time over the total duration of the continuing current for positive flashes, which presented an exponential decay (correlation coefficient: 0.83), similar to what has been observed for negative flashes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work describes a methodology for power factor control and correction of the unbalanced currents in four-wire electric circuits. The methodology is based on the insertion of two compensation networks, one wye-grounded neutral and another in delta, in parallel to the load. The mathematical development has been proposed in previous work [3]. In this paper, however, the methodology was adapted to accept different power factors for the system to be compensated. on the other hand, the determination of the compensation susceptances is based on the instantaneous values of the load currents. The results are obtained using the MatLab - Simulink environment.
Resumo:
This paper shows the results of experimental investigations of three-phase banks composed of single-phase transformers and three-phase three-limb core transformers under simultaneous alternating and direct current excitations, for several winding connections. Harmonic analysis of excitation currents for different de saturation levels is performed.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Optimised placement of control and protective devices in distribution networks allows for a better operation and improvement of the reliability indices of the system. Control devices (used to reconfigure the feeders) are placed in distribution networks to obtain an optimal operation strategy to facilitate power supply restoration in the case of a contingency. Protective devices (used to isolate faults) are placed in distribution systems to improve the reliability and continuity of the power supply, significantly reducing the impacts that a fault can have in terms of customer outages, and the time needed for fault location and system restoration. This paper presents a novel technique to optimally place both control and protective devices in the same optimisation process on radial distribution feeders. The problem is modelled through mixed integer non-linear programming (MINLP) with real and binary variables. The reactive tabu search algorithm (RTS) is proposed to solve this problem. Results and optimised strategies for placing control and protective devices considering a practical feeder are presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper proposes a methodology to achieve integrated planning and projects for secondary distribution circuits. The planning model is formulated as a mixed integer nonlinear programming problem (MINLP). In order to resolve this problem, a tabu search (TS) algorithm is used, with a neighborhood structure developed to explore the physical characteristics of specific geographies included in the planning and expansion of secondary networks, thus obtaining effective solutions as well as low operating costs and investments. The project stage of secondary circuits consists of calculating the mechanical efforts to determine the support structures of the primary and secondary distribution systems and determining the types of structures that should be used in the system according to topological and electrical parameters of the network and, therefore, accurately assessing the costs involved in the construction and/or reform of secondary systems. A constructive heuristic based on information of the electrical and topological conditions between the medium voltage and low voltage systems is used to connect the primary systems and secondary circuits. The results obtained from planning and design simulations of a real secondary system of electric energy distribution are presented.
Resumo:
Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.