953 resultados para Electric alarms
Resumo:
Climate change is becoming more visible in the political arena. Electric generating companies will likely be impacted by future regulation of climate change related emissions. Even though few climate related programs are mandatory, electric generating companies should begin to implement greenhouse gas management systems. This report includes a review of issues facing the electric generating industry, an examination of current emission management programs, and recommendations for an effective greenhouse gas management framework. An effective greenhouse gas management program allows a company to continually improve their impact on climate change by reducing emissions using the plan, do, check, act process. To ease the reporting burden, companies should apply de minimis exemptions to sources that produce less than 5% of emissions.
Resumo:
The need for more sustainable public transportation choices drives innovation and provides opportunity for improvement in options. Transit buses provide many advantages for efficient transportation and electric drive vehicles are anticipated to play an increasing role in future transportation systems. A lifecycle cost analysis of battery electric transit buses indicates rate structures and demand charges do not currently have a large impact on lifecycle cost for small fleets of battery electric buses. As fleets grow, policies and rate structures will need to adjust to avoid becoming a barrier to adoption. Battery electric transit buses are now being developed which promise to address the primary issues of high life cycle cost, low reliability, range, and flexibility.
Resumo:
Support for this work was provided by the Generalitat Valenciana (Spain) with projects PROMETEO/2009/043/FEDER, and by the Spanish MCT CTQ2008-05520.
Resumo:
We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold - Au(110), Au(111), Au(210) - and platinum - Pt(100), Pt(110), Pt(111), Pt(210) - electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry showed to have an important influence, with Au(210) sustaining a current density of up to 1442 (± 101) μA cm- 2 at the steady state, over Au(111) with 961 (± 94) μA cm- 2 and Au(110) with 944 (± 89) μA cm- 2. On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production.
Resumo:
Combustion runs at 700 °C in a horizontal laboratory furnace were carried out on two different electric wires (PVC and halogen-free wire). Tests were performed in the presence and in the absence of the metal conductor of the wires. The analyses of the polycyclic aromatic hydrocarbons (PAHs), chlorobenzenes (CBzs), chlorophenols (CPhs), mono- to octa-chlorodibenzo-p-dioxin and dibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, PAHs production decreases in the presence of metal, while a higher amount of chlorinated compounds are emitted. Respect to the PCDD/Fs, the PVC wire in the presence of metal presents the highest emission, with a much more emission of furans than dioxins. The maximum emission is with 2 or 3 chlorine atom PCDD/Fs. PCBs emission correlates with PCDD/F production and represents 3–4% of total toxicity, determined by using WHO2005 factors.
Resumo:
The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.