980 resultados para Electric Power Transmission


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an ever more competitive environment, power distribution companies must satisfy two conflicting objectives: minimizing investment costs and the satisfaction of reliability targets. The network reconfiguration of a distribution system is a technique that well adapts to this new deregulated environment for it allows improvement of reliability indices only opening and closing switches, without the onus involved in acquiring new equipment. Due to combinatorial explosion problem characteristic, in the solution are employed metaheuristics methods, which converge to optimal or quasi-optimal solutions, but with a high computational effort. As the main objective of this work is to find the best configuration(s) of the distribution system with the best levels of reliability, the objective function used in the metaheuristics is to minimize the LOLC - Loss Of Load Cost, which is associated with both, number and duration of electric power interruptions. Several metaheuristics techniques are tested, and the tabu search has proven to be most appropriate to solve the proposed problem. To characterize computationally the problem of the switches reconfiguring was developed a vector model (with integers) of the representation of the switches, where each normally open switch is associated with a group of normally closed switches. In this model simplifications have been introduced to reduce computational time and restrictions were made to exclude solutions that do not supply energy to any load point of the system. To check violation of the voltage and loading criteria a study of power flow for the ten best solutions is performed. Also for the ten best solutions a reliability evaluation using Monte Carlo sequential simulation is performed, where it is possible to obtain the probability distributions of the indices and thus calculate the risk of paying penalty due to not meeting the goals. Finally, the methodology is applied in a real Brazilian distribution network, and the results are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the biggest challenges today is to develop clean fuels, which do not emit pollutant and with viable implementation. One of the options currently under study is the hydrogen production process. In this context, this work aims to study the technical and economical aspects of the incorporation process of hydrogen producing by ethanol steam reforming in the sugar cane industry and MCFC (molten carbonate fuel cell) application on it to generate electric power. Therefore, it has been proposed a modification in the traditional process of sugar cane industry, in order to incorporate hydrogen production, besides the traditional products (sugar, ethylic, hydrated and anhydric alcohol). For this purpose, a detailed theoretical study of the ethanol production process, describing the considerations to incorporate the hydrogen production will be performed. After that, there will be a thermodynamic study for analysing the innovation of this production chain, as well as a study of economic engineering to allocate the costs of products of the new process, optimising it and considering the thermoeconomics as being as an analysis tool. This proposal aims to improve Brazil's position in the ranking of international biofuels, corroborating the nation to be a power in the hydrogen era. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cogeneration may be defined as the simultaneous production of electric power and useful heat from the burning of a single fuel. This technique of combined heat and power production has been applied in both the industrial and tertiary sectors. It has been mainly used because of its overall efficiency, and the guarantee of electricity with a low level of environmental impact. The compact cogeneration systems using internal combustion engine as prime movers are thoroughly applied because of the good relationship among cost and benefit obtained in such devices. The cogeneration system of this study consists of an internal combustion engine using natural gas or biogas as fuel, combined with two heat exchangers and an absorption chiller utilising water-ammonia as working mixture. This work presents an energetic and economic comparison between natural gas and biogas as fuel used for the system proposed. The results are useful to identify the feasible applications for this system, such as residential sector in isolated areas, hotels, universities etc. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the congestion effects on emission and consumers' allocated cost. In order to consider some environmental and operational effects of congestion, an environmental constrained active-reactive optimal power flow (AROPF) considering capability curve is presented. On outage conditions, the total cost of the system will increase. On the other hand in power systems, the operating cost and system emission have conflicted objectives, then it may be concluded that the outage in the system may lead to a total emission decrease. In this paper the famous Aumann-Shapley method is used as a pricing methodology. Two case studies such as 14-bus and US-bus IEEE test systems are conducted. Results demonstrate that, although the line outage in power systems leads to increase the total cost, the amount of emission depending on the place where the outage occurs can be more than, less than or equal to the normal conditions' emission. Also results show that although from power sellers' standpoint the well-known Aumann-Shapley method is a precise pricing method to cover the incurred cost with an acceptable error that can show the real effect of congestion on consumers' cost, from consumers' standpoint it is not a good method for cost allocation, because some consumers will face with an increase in cost and the others will face with a decrease on their cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of electric arc welding with shielding gas (GMAW) is being increasingly used in various industrial applications. This process occurs by which an electric arc is established between the work piece and a consumable in the form of wire, the arc melts the wire continuously as it is fed to the weld pool. The weld metal is protected from the atmosphere by flowing a gas (or gas mixture) inert or active. This paper presents a study of the welding process GMAW - MIG on aluminum tubes, alloy 6101 - T6, used in the manufacture of armored busbar, intended for driving electric power plants. 5(five) were welded specimens, changing certain welding parameters at each time was monitored welding joint as well as the interpass temperature. Tests were performed bending, tensile and macrographical analysis of body-of-evidence and through its results was possible to reach a better welding condition, which minimizes the appearance of pores, since the porosity has great influence on the mechanical strength and electrical conductivity of welded pipes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the biggest environmental problems of today is the climate change. Experts affirm that this global warming is related to the greenhouse effect. Its causes are directly related to human activity, especially the use of fossil fuels. In this context, companies around the world are challenged to improve energy efficiency in order to reduce the environmental impact and work toward the so-called tripod of sustainable development that focuses on the social, economic and environmental aspects of a business strategy. The first step a company can make in this regard is to conduct an inventory of emissions of greenhouse gases (GHGs). The reduction of GHG emissions in a refinery can be achieved by replacing steam turbines with electric motors to drive big machines, this reduction is achieved by relieving the steam consumption for electric power available or purchased. An important aspect associated with the reduction of GHG emissions is the best performance of the Energy Intensity Index (ERI). The objective of this study was to analyze the feasibility of the blower motorization in the regenerative cycle of a fluidized catalytic cracking unit at a specific refinery. For development work, two methods were used, the initial screening and optimization scenarios with the help of software Butyl. The results indicate that after a certain cost of natural gas this substitution becomes favorable. In addition, there is a large reduction of CO2 emissions avoided by burning fuel