970 resultados para Eddy
Resumo:
Fog deposition, precipitation, throughfall and stemflow were measured in a windward tropical montane cloud forest near Monteverde, Costa Rica, for a 65-day period during the dry season of 2003. Net fog deposition was measured directly using the eddy covariance (EC) method and it amounted to 1.2 ± 0.1 mm/day (mean ± standard error). Fog water deposition was 5-9% of incident rainfall for the entire period, which is at the low end of previously reported values. Stable isotope concentrations (d18O and d2H) were determined in a large number of samples of each water component. Mass balance-based estimates of fog deposition were 1.0 ± 0.3 and 5.0 ± 2.7 mm/day (mean ± SE) when d18O and d2H were used as tracer, respectively. Comparisons between direct fog deposition measurements and the results of the mass balance model using d18O as a tracer indicated that the latter might be a good tool to estimate fog deposition in the absence of direct measurement under many (but not all) conditions. At 506 mm, measured water inputs over the 65 days (fog plus rain) fell short by 46 mm compared to the canopy output of 552 mm (throughfall, stemflow and interception evaporation). This discrepancy is attributed to the underestimation of rainfall during conditions of high wind.
Resumo:
Vertical profiles of light scattering at a right angle and turbidity profiles in seawater indicating suspended matter concentration in the near-bottom nepheloid layer (NNL) were measured simultaneously with temperature, salinity, and density profiles at the continental slope off the northwestern Africa. About 100 stations 5' apart in latitude and longitude were carried out over an ocean area of 6100 sq. km. Special features of the NNL variability in the area were analyzed. It was found that some structural parameters of the NNL (maximum transparency depth, that is the upper boundary of NNL; NNL thickness; maximum and total turbidity) correlate with ocean depth. On the average, thickness of the NNL in the area is 20-40% of the ocean depth. At most stations the NNL is fairly strong. In the shelf region NNL turbidity was influenced by the intensive near-shore upwelling. Formation of ''high-energy near-bottom layers'' in the shelf region resulted from passing of a mesoscale cyclonic eddy that caused redistribution of measured quantities within the entire water column.
Resumo:
(preliminary) Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 sites registered and up to 250 of them sharing data (Free Fair Use dataset). Many modelling groups use the FLUXNET dataset for evaluating ecosystem model's performances but it requires uninterrupted time series for the meteorological variables used as input. Because original in-situ data often contain gaps, from very short (few hours) up to relatively long (some months), we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-interim) and high temporal resolution spanning from 1989 to today. These data are however not measured at site level and for this reason a method to downscale and correct the ERA-interim data is needed. We apply this method on the level 4 data (L4) from the LaThuile collection, freely available after registration under a Fair-Use policy. The performances of the developed method vary across sites and are also function of the meteorological variable. On average overall sites, the bias correction leads to cancel from 10% to 36% of the initial mismatch between in-situ and ERA-interim data, depending of the meteorological variable considered. In comparison to the internal variability of the in-situ data, the root mean square error (RMSE) between the in-situ data and the un-biased ERA-I data remains relatively large (on average overall sites, from 27% to 76% of the standard deviation of in-situ data, depending of the meteorological variable considered). The performance of the method remains low for the Wind Speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.
Resumo:
As part of ongoing circulation studies in the Arctic, seawater samples for dissolved Ba concentrations were obtained during Sep.-Oct., 1992 at several locations in the Bering Strait, Eastern Chukchi and Southern Beaufort Seas. The results reveal a dynamic rang (10 to 150 nmol/kg) for this element in the Arctic equal to or greater than that in combined Atlantic, Indian and Pacific oceans. Lowest levels are observed in surface waters, with values tending to decrease northwards in the direction of currents generally flowing frorn the Bering Strait along the Alaskan coast. Low surfacc concentrations tend to be accompanied by relatively enriched near bottom levels. On the basis of these spatial distributions, hydrographic observations and a knowledge of its behavior in other marine settings, it appears that Ba can be significantly depleted from surface waters as a result of the highly seasonal biological aclivities over Arctic marginal shelves. Removal at the surface is counteracted to some extent by regeneration at depth or in the sediments and by riverine inputs. The biologically related drawdown is likely to enhance the contrast between 'background' surface Ba levels in the Arctic and waters imprinted by regeneration and/or rivers, These preliminary findings suggest that Ba holds particular promise for tracing river waters and the ventilation of halodine waters hy laterally sinking brines produced during ice formation over the shelves.
Resumo:
The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.
Resumo:
In the literature, an inconsistency exists between estimates of biotically-effected carbon export inferred from large-scale geochemical studies (Jenkins 1982; 47 gC m-2 a-1) and local measurements of turbulent nutrient supply (Lewis et al. 1986; 4 gC m-2 a-1) in the eastern subtropical North Atlantic. Nutrient supply to the upper ocean by turbulent mixing is reexamined using local standard oceanographic measurements and high-resolution vertical profiles of nutrients averaged over a large region directly comparable to that investigated by Jenkins (1982). Turbulent fluxes induced by internal waves and salt fingering, respectively, are separated according to Gregg (1989) and Zhang et al. (1998). Nutrient transport into the nutrient-consuming surface layer by salt fingering is more than fivefold higher than transport due to internal-wave induced turbulence. Still, this cannot resolve the above- mentioned apparent inconsistency, even if additional physical transport mechanisms such as eddy pumping, advection and horizontal diffusion are accounted for. Estimated nitrate fluxes due to vertical turbulent diffusion are 0.05-0.15 mol m-2 a-1, corresponding to 4-11 gC m-2 a-1. Observed NO3/PO4 turbulent flux ratios of up to 23 are interpreted as the imprint of N2 fixation.
Resumo:
Lateral diffusivity is computed from a tracer release experiment in the northeastern tropical Atlantic thermocline. The uncertainties of the estimates are inferred from a synthetic particle release using a high-resolution ocean circulation model. The main method employed to compute zonal and meridional components of lateral diffusivity is the growth of the second moment of a cloud of tracer. The application of an areal comparison method for estimating tracer-based diffusivity in the field experiments is also discussed. The best estimate of meridional eddy diffusivity in the Guinea Upwelling region at about 300 m depth is estimated to be inline image m2 s-1. The zonal component of lateral diffusivity is estimated to be inline image m2 s-1, while areal comparison method yields areal equivalent zonal diffusivity component of inline image m2 s?1. In comparison to Ky, Kx is about twice larger, resulting from the tracer patch stretching by zonal jets. Employed conceptual jet model indicates that zonal jet velocities of about inline image m s?1 are required to explain the enhancement of the zonal eddy diffusivity component. Finally, different sampling strategies are tested on synthetic tracer release experiments. They indicate that the best sampling strategy is a sparse regular sampling grid covering most of the tracer patch.
Resumo:
The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C/ha), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C/m**2/ in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.
Resumo:
Temperate, transitional and subtropical waters of the remote Azores Front region east of Azores (24-40°N, 22-32°W) were sampled during three cruises conducted under increasing stratification conditions (April 1999, May 1997 and August 1998). Despite the temporal increase of surface temperature (by 5 °C) and stratification (by 2.1 1/min**2), as well as the thermocline shoaling (by ~15 m), dissolved organic carbon (DOC) and nitrogen (DON) in the surface layer were not significantly different for the early spring, late spring and summer periods, with average concentrations of 69±2 µM-C and 5.2±0.4 µM-N, respectively. The surface excess of semi-labile DOC, compared with the baseline DOC concentration in the deep ocean (47±2 µM-C), represents 33% of the bulk DOC concentration and as much as 85% of the TOC (=POC+DOC) excess. When compared with the winter baseline (56±2 µM-C), the seasonal surface DOC excess is 20% of the bulk DOC concentration and 87% of the seasonal TOC excess. These results confirm the major role played by DOC in the carbon cycle of surface waters of the Azores Front region. The total amount of bioreactive DOC transported from the temperate to the subtropical North Atlantic by the Ekman flux between March and December represents only ~15% of the average annual primary production, and ~15% and ~30% of the measured sinking POC flux+vertical DOC eddy diffusion during early spring and summer, respectively. Vertical eddy diffusion is 35% and 2% of the spring and summer sinking POC flux, respectively. On the other hand, DOC only contributes 13% to the local oxidation of organic matter in subsurface waters (between the pycnocline and 500 m) of the study region.
Resumo:
Faunal analyses of planktonic foraminifera and upper-water temperature reconstructions with the modern analog technique are studied and compared to themagnetic susceptibility and gamma ray logs of ODP Core 999A (western Caribbean) for the past 560 kyr in order to explore changes in paleoceanographic conditions in the western Caribbean Sea. Long-term trends in the percentage abundance of planktonic foraminifera inODP Core 999Asuggest two hydrographic scenarios: before and after 480 ka.High percentage abundances of Neogloboquadrina pachyderma and Globorotalia inflata, low abundances of Globorotalia menardii and Globorotalia truncatulinoides, low diversity, and sea-surface temperatures (SST) under 24 °C are typical characteristics occurring from 480 to 560 ka. These characteristics suggest a "shallow" well-oxygenated upper thermocline and the influx of nutrients by either seasonal upwelling plumes and/or eddy-mediated entrainment. The second scenario occurred after 480 ka, and it is characterized by high and fluctuating percentage abundances of Neogloboquadrina dutertrei, G. truncatulinoides, G. menardii, Globigerinita glutinata, Globigerinella siphonifera, and Globigerinoides ruber; a declining trend in diversity; and large SSTs. These characteristics suggest a steady change from conditions characterized by a "shallow" thermocline and chlorophyll maximum to conditions characterized by a "deep" thermocline (mainly during glacial stages) and by more oligotrophic conditions. The influence of the subtropical North Atlantic on the upper thermocline was apparently larger during glacial stages, thus favoring a deepening of the thermocline, an increase in sea-surface salinity, and a dramatic reduction of nutrients in the Guajira upwelling system. During interglacial stages, the influx of nutrients from the Magdalena River is stronger, thus resulting in a deep chlorophyll maximumand a fresher upper ocean. The eddy entrainment of nutrients is the probable mechanism responsible of transport from the Guajira upwelling and Magdalena River plumes into ODP 999A site.
Resumo:
In order to evaluate bioturbation in abyssal Arabian-Sea sediments of the Indus fan profiles of 210Pb (half-life: 22.3 yr) and 234Th (half-life: 24.1 d) were measured in cores collected during September and October 1995 and April 1997, respectively. The density and composition of epibenthic megafauna and lebensspuren were determined in vertical seafloor photographs during April 1997. Mean eddy-diffusive mixing coefficients according to the distribution of excess 210Pb ( 210Pb-DB) were 0.072±0.028, 0.068±0.055, 0.373±0.119, 0.037±0.009 and 0.079±0.119 cm**2 yr**-1 in the northern, western, central, eastern and southern abyssal Arabian sea, respectively. Mean eddy-diffusive mixing coefficients according to the distribution of excess 234Th (234Th-DB) were 0.53, 1.64 and 0.47 cm**2 yr**-1 in the northern, western and central abyssal Arabian Sea, respectively. Mobile epibenthic megafauna at the western, northern, central and southern study sites were dominated by ophiuroids, holothurians, ophiuroids and natant decapods (the respective densities were 100, 82, 29 and 6 individuals 1000 m**-2). The northern study site was characterized by a high abundance of spoke traces and fecal casts. The central site showed spoke traces and many tracks. The southern site displayed the highest abundance of spoke traces, whereas at the western site hardly any lebensspuren were observed. There is evidence for at least two functional endmember communities in the Arabian Sea. In the northwestern Arabian Sea (WAST) vertical particle displacement seems to be dominated by macrofauna and primarily eddy-diffusive. In the southern Arabian Sea (SAST) non-local and 'incidental' mixing due to spoke-trace producers might become more important and superimpose reduced eddy-diffusive mixing. With respect to biological data CAST is an intermediate location. Given the biological data, average 210Pb-DB is higher and decimeter-scale variability of 210Pb-DB smaller at CAST than expected. These findings indicate that in a mixture of both endmember communities the organisms may interact in way that increases values of biodiffusivity, as reflected by 210Pb-DB, and reduces decimeter-scale 210Pb-DB heterogeneity in comparison to the simple sum of the isolated effects of the endmembers. For time scales <100 years there was no evidence for a relationship between food supply (POC flux) and bioturbation intensity, as reflected by 210Pb-DB and 234Th-DB. Bioturbation intensity should be controlled primarily by the composition of the benthic fauna, its specific adaptation to the environmental setting, and the abundance of each species of the benthic community. Food supply can have only an indirect influence on bioturbation intensity. In certain parts of the ocean the a priori overall positive relationship between POC flux and biodiffusivity might include restricted intervals displaying no or even negative relations.
Resumo:
As the Antarctic Circumpolar Current crosses the South-West Indian Ocean Ridge, it creates an extensive eddy field characterised by high sea level anomaly variability. We investigated the diving behaviour of female southern elephant seals from Marion Island during their post-moult migrations in relation to this eddy field in order to determine its role in the animals' at-sea dispersal. Most seals dived within the region significantly more often than predicted by chance, and these dives were generally shallower and shorter than dives outside the eddy field. Mixed effects models estimated reductions of 44.33 ± 3.00 m (maximum depth) and 6.37 ± 0.10 min (dive duration) as a result of diving within the region, along with low between-seal variability (maximum depth: 5.5 % and dive duration: 8.4 %). U-shaped dives increased in frequency inside the eddy field, whereas W-shaped dives with multiple vertical movements decreased. Results suggest that Marion Island's adult female elephant seals' dives are characterised by lowered cost-of-transport when they encounter the eddy field during the start and end of their post-moult migrations. This might result from changes in buoyancy associated with varying body condition upon leaving and returning to the island. Our results do not suggest that the eddy field is a vital foraging ground for Marion Island's southern elephant seals. However, because seals preferentially travel through this area and likely forage opportunistically while minimising transport costs, we hypothesise that climate-mediated changes in the nature or position of this region may alter the seals' at-sea dispersal patterns.