989 resultados para Earth and Atmospheric Sciences
Resumo:
Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM). We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present - yBP), and Eemian (125 000 yBP) orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.
Resumo:
Re-Os and Pb-Pb isotopic analysis of reduced varved sediments cored in the deeper basin of Saanich Inlet (B.C.) are presented. From core top to 61 cm down-core, spanning approximately the last 100 yrs of sedimentation, 187Os/188Os ratio and Os concentration respectively increase from ~0.8 to ~0.9 and from 55 to 60 ppt, whereas Re concentration decreases from 3600 to 2600 ppt. Re correlates with Corg (R2=0.6) throughout the entire section, whereas Os follows Re and Corg trends deeper down-core, suggesting a decoupling of a Re- and Os-geochemistry during burial and/or very early diagenesis. No systematic compositional differences are observed between seasonal laminae. 204Pb-normalized lead isotope ratios increase from sediment surface down to 7 cm down-core, then decrease steadily to pre-industrial levels at ~50 cm down-core. This pattern illustrates the contamination from leaded gasoline until the recent past. The measured Pb isotopic ratios point primarily toward gasoline related atmospheric lead from the USA. The osmium isotopic values measured are significantly lower than those of modern seawater-Os. In comparison with other anoxic environments, the osmium content of Saanich Inlet sediments is low, and its Os isotopic composition suggests significant inputs from unradiogenic sources (detrital and/or dissolved). Ultramafic lithologies in the watershed of the Fraser River are suspected to contribute to sedimentary inputs as well as to the input of dissolved unradiogenic osmium in the water of Saanich Inlet. The presence of some unradiogenic Os from anthropogenic contamination cannot be discounted near the core top, but since deeper, pre-anthropogenic levels also yielded unradiogenic Os results, one is led to conclude that the overall low 187Os/188Os ratios result from natural geochemical processes. Thus, the bulk sediment of Saanich Inlet does not appear to record 187Os/188Os composition of the marine end-member of the only slightly below normal salinity, fjord water. The low seawater-derived Os content of the sediment, coupled with unradiogenic Os inputs from local sources, explains the overall low isotopic values observed. As a consequence, such near-shore anoxic sediments are unlikely to record changes in the past ocean Os isotopic composition.
Resumo:
A critical problem in radiocarbon dating is the spatial and temporal variability of marine reservoir ages (MRAs). We assessed the MRA evolution during the last deglaciation by numerical modeling, applying a self-consistent iteration scheme in which an existing radiocarbon chronology (derived by Hughen et al., Quat. Sci. Rev., 25, pp. 3216-3227, 2006) was readjusted by transient, 3-D simulations of marine and atmospheric Delta14C. To estimate the uncertainties regarding the ocean ventilation during the last deglaciation, we considered various ocean overturning scenarios which are based on different climatic background states (PD: modern climate, GS: LGM climate conditions). Minimum and maximum MRAs are included in file 'MRAminmax_21-14kaBP.nc'. Three further files include MRAs according to equilibrium simulations of the preindustrial ocean (file 'C14age_preindustrial.nc'; this is an update of our results published in 2005) and of the glacial ocean (files 'C14age_spinupLGM_GS.nc' and 'C14age_spinupLGM_PD.nc').
Resumo:
The dataset consists of 87Sr/86Sr isotope ratios of plant samples and soil leachates covering the major geologic regions of France. In addition to the isotope data it provides the spatial context for each sample, including background geology, field observations and soil descriptions. The dataset can be used to create Sr isoscapes for France, which can be applied in a wide range of fields including archaeology, ecology, soil, food, and forensic sciences.
Resumo:
Beryllium 10 concentrations (10Becon) were measured at annual resolution from varved sediment cores of Lakes Tiefer See (TSK) and Czechowskie (JC) for the period 1983-2009 (~solar cycles 22 and 23). Calibrating the 10Becon time-series against complementing proxy records from the same archive as well as local precipitation and neutron monitor data, reflecting solar forced changes in atmospheric radionuclide production, allowed (i) identifying the main depositional processes and (ii) evaluating the potential for solar activity reconstruction. 10Becon in TSK and JC sediments are significantly correlated to varying neutron monitor counts (TSK: r=0.5, p=0.05, n=16; JC: r=0.46, p=0.03, n=22). However, the further correlations with changes in organic carbon contents in TSK as well as varying organic carbon and detrital matter contents in JC point to catchment specific biases in the 10Becon time-series. In an attempt to correct for these biases multiple regression analysis was applied to extract an atmospheric 10Be production signal (10Be atmosphere). To increase the signal to noise ratio a 10Be composite record (10Be composite) was calculated from the TSK and JC 10Be atmosphere time-series. 10Becomposite is significantly correlated to variations in the neutron monitor record (r=0.49, p=0.01, n=27) and matches the expected amplitude changes in 10Be production between solar cycle minima and maxima. This calibration study on 10Be from two sites indicates the large potential but also, partly site-specific, limitations of 10Be in varved lake sediments for solar activity reconstruction.
Resumo:
Continuous sea salt and mineral dust aerosol records have been studied on the two EPICA (European Project for Ice Coring in Antarctica) deep ice cores. The joint use of these records from opposite sides of the East Antarctic plateau allows for an estimate of changes in dust transport and emission intensity as well as for the identification of regional differences in the sea salt aerosol source. The mineral dust flux records at both sites show a strong coherency over the last 150 kyr related to dust emission changes in the glacial Patagonian dust source with three times higher dust fluxes in the Atlantic compared to the Indian Ocean sector of the Southern Ocean (SO). Using a simple conceptual transport model this indicates that transport can explain only 40% of the atmospheric dust concentration changes in Antarctica, while factor 5-10 changes occurred. Accordingly, the main cause for the strong glacial dust flux changes in Antarctica must lie in environmental changes in Patagonia. Dust emissions, hence environmental conditions in Patagonia, were very similar during the last two glacials and interglacials, respectively, despite 2-4 °C warmer temperatures recorded in Antarctica during the penultimate interglacial than today. 2-3 times higher sea salt fluxes found in both ice cores in the glacial compared to the Holocene are difficult to reconcile with a largely unchanged transport intensity and the distant open ocean source. The substantial glacial enhancements in sea salt aerosol fluxes can be readily explained assuming sea ice formation as the main sea salt aerosol source with a significantly larger expansion of (summer) sea ice in the Weddell Sea than in the Indian Ocean sector. During the penultimate interglacial, our sea salt records point to a 50% reduction of winter sea ice coverage compared to the Holocene both in the Indian and Atlantic Ocean sector of the SO. However, from 20 to 80 ka before present sea salt fluxes show only very subdued millennial changes despite pronounced temperature fluctuations, likely due to the large distance of the sea ice salt source to our drill sites.
Resumo:
A 160 m mostly turbiditic late Pleistocene sediment sequence (IODP Expedition 308, Hole U1319A) from the Brazos-Trinity intraslope basin system off Texas was investigated with paleo- and rock magnetic methods. Numerous layers depleted in iron oxides and enriched by the ferrimagnetic iron-sulfide mineral greigite (Fe3S4) were detected by diagnostic magnetic properties. From the distribution of these layers, their stratigraphic context and the present geochemical zonation, we develop two conceptual reaction models of greigite formation in non-steady depositional environments. The "sulfidization model" predicts single or twin greigite layers by incomplete transformation of iron monosulfides with polysulfides around the sulfate methane transition (SMT). The "oxidation model" explains greigite formation by partial oxidation of iron monosulfides near the iron redox boundary during periods of downward shifting oxidation fronts. The stratigraphic record provides evidence that both these greigite formation processes act here at typical depths of about 12-14 mbsf and 3-4 mbsf. Numerous "fossil" greigite layers most likely preserved by rapid upward shifts of the redox zonation denote past SMT and sea floor positions characterized by stagnant hemipelagic sedimentation conditions. Six diagenetic stages from a pristine magnetite-dominated to a fully greigite-dominated magnetic mineralogy were differentiated by combination of various hysteresis and remanence parameters.