910 resultados para ENDOTHELIAL PROGENITOR CELL
Resumo:
We have studied the effect of inactivated microbial stimuli (Candida albicans, Candida glabrata, Saccharomyces boulardii, and Staphylococcus aureus) on the in vitro differentiation of lineage negative (Lin−) hematopoietic progenitor mouse cells. Purified Lin− progenitors were co-cultured for 7 days with the stimuli, and cell differentiation was determined by flow cytometry analysis. All the stimuli assayed caused differentiation toward the myeloid lineage. S. boulardii and particularly C. glabrata were the stimuli that induced in a minor extent differentiation of Lin− cells, as the major population of differentiated cells corresponded to monocytes, whereas C. albicans and S. aureus induced differentiation beyond monocytes: to monocyte-derived dendritic cells and macrophages, respectively. Interestingly, signaling through TLR2 by its pure ligand Pam3CSK4 directed differentiation of Lin− cells almost exclusively to macrophages. These data support the notion that hematopoiesis can be modulated in response to microbial stimuli in a pathogen-dependent manner, being determined by the pathogen-associated molecular patterns and the pattern-recognition receptors involved, in order to generate the populations of mature cells required to deal with the pathogen.
Resumo:
Il est reconnu que la protéine filamenteuse intermédiaire Nestine est exprimée lors du processus de cicatrisation et du remodelage fibrotique. De plus, nous avons identifié l’expression de la Nestine au sein de deux populations distinctes qui sont directement impliquées dans les réponses de fibroses réparative et réactive. Ainsi, une population de cellules souches neurales progénitrices résidentes du coeur de rat adulte exprime la Nestine et a été identifiée à titre de substrat de l’angiogenèse et de la neurogenèse cardiaque. Également, la Nestine est exprimée par les myofibroblastes cicatriciels cardiaques et il a été établi que la protéine filamenteuse intermédiaire joue un rôle dans la prolifération de ces cellules. Ainsi, l’objectif général de cette thèse était de mieux comprendre les évènements cellulaires impliqués dans la réponse neurogénique des cellules souches neurales progénitrices résidentes cardiaques Nestine(+) (CSNPRCN(+)) lors de la fibrose réparative cardiaque et d’explorer si l’apparition de fibroblastes Nestine(+) est associée avec la réponse de fibrose réactive secondaire du remodelage pulmonaire. Une première publication nous a permis d’établir qu’il existe une régulation à la hausse de l’expression de la GAP43 (growth associated protein 43) et que cet événement transitoire précède l’acquisition d’un phénotype neuronal par les CSNPRCN(+) lors du processus de cicatrisation cardiaque chez le rat ayant subi un infarctus du myocarde. De plus, la surimposition de la condition diabétique de type 1, via l’injection unique de Streptozotocine chez le rat, abolit la réponse neurogénique des CSNPRCN(+), qui est normalement induite à la suite de l’ischémie cardiaque ou de l’administration de 6-hydroxydopamine. Le second article a démontré que le développement aigu de la fibrose pulmonaire secondaire de l’infarctus du myocarde chez le rat est associé avec une augmentation de l’expression protéique de la Nestine et de l’apparition de myofibroblastes pulmonaires Nestine(+). Également, le traitement de fibroblastes pulmonaires avec des facteurs de croissances peptidiques pro-fibrotiques a augmenté l’expression de la Nestine par ces cellules. Enfin, le développement initial de la condition diabétique de type 1 chez le rat est associé avec une absence de fibrose réactive pulmonaire et à une réduction significative des niveaux protéiques et d’ARN messager de la Nestine pulmonaire. Finalement, la troisième étude représentait quant à elle un prolongement de la deuxième étude et a alors examiné le remodelage pulmonaire chronique chez un modèle établi d’hypertension pulmonaire. Ainsi, les poumons de rats adultes mâles soumis à l’hypoxie hypobarique durant 3 semaines présentent un remodelage vasculaire, une fibrose réactive et une augmentation des niveaux d’ARN messager et de la protéine Nestine. De plus, nos résultats ont démontré que la Nestine, plutôt que l’alpha-actine du muscle lisse, est un marqueur plus approprié des diverses populations de fibroblastes pulmonaires activés. Également, nos données suggèrent que les fibroblastes pulmonaires activés proviendraient en partie de fibroblastes résidents, ainsi que des processus de transition épithélio-mésenchymateuse et de transition endothélio-mésenchymateuse. Collectivement, ces études ont démontré que des populations distinctes de cellules Nestine(+) jouent un rôle majeur dans la fibrose réparative cardiaque et la fibrose réactive pulmonaire.
Resumo:
Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis.
Resumo:
Sickle cell anemia (SCA) is an autosomal recessive chronic hemolytic anemia, caused by homozygosity for the HBB:c.20A>T mutation. The disease presents with high clinical heterogeneity, stroke being the most devastating manifestation. This study aimed to identify genetic modulators of severe hemolysis and stroke risk in children with SCA, as well as understand their consequences at the hemorheological level. Sixty-six children with SCA were categorised according to their degree of cerebral vasculopathy (Stroke/Risk/Control). Relevant data were collected from patients’ medical records. Several polymorphic regions in genes related to vascular cell adhesion and tonus were characterized by molecular methodologies. Data analyses were performed using R software. Several in silico tools (e.g. TFBind, MatInspector) were applied to investigate the main variant consequences. Some genetic variants in vascular adhesion molecule-1 gene promoter and endothelial nitric oxide synthase gene were associated with higher levels of hemolysis and stroke events. They modify important transcription factor binding sites or disturb the corresponding protein structure/function. Our findings emphasize the relevance of the genetic variants in modulating the degree of hemolysis and development of cerebral vasculopathy due to their effect on gene expression, modification of protein biological activities related with erythrocyte/endothelial interactions and consequent hemorheological abnormalities in SCA.
Resumo:
PURPOSE To evaluate macular retinal ganglion cell thickness in patients with neovascular age-related macular degeneration (AMD) and intravitreal anti-vascular endothelial growth factor (VEGF) therapy. DESIGN Retrospective case series with fellow-eye comparison METHODS: Patients with continuous unilateral anti-VEGF treatment for sub- and juxtafoveal neovascular AMD and a minimum follow-up of 24 months were included. The retinal nerve fiber (RNFL) and retinal ganglion cell layer (RGCL) in the macula were segmented using an ETDRS grid. RNFL and RGCL thickness of the outer ring of the ETDRS grid were quantified at baseline and after repeated anti-VEGF injections, and compared to the patients' untreated fellow eye. Furthermore, best-corrected visual acuity (BCVA), age, and retinal pigment epithelium (RPE) atrophy were recorded and correlated with RNFL and RGCL. RESULTS Sixty eight eyes of 34 patients (23 female and 11 male; mean age 76.7 (SD±8.2) with a mean number of 31.5 (SD ±9.8) anti-VEGF injections and a mean follow-up period of 45.3 months (SD±10.5) were included. Whereas the RGCL thickness decreased significantly compared to the non-injected fellow eye (p=0.01) the decrease of the RNFL was not significant. Visual acuity gain was significantly correlated with RGCL thickness (r=0.52, p<0.05) at follow-up and negatively correlated (r=-0.41, p<0.05) with age. Presence of RPE atrophy correlated negatively with the RGCL thickness at follow-up (r= -0.37, p=0.03). CONCLUSION During the course of long term anti-VEGF therapy there is a significant decrease of the RGCL in patients with neovascular AMD to the fellow (untreated) eye.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Individuals with periodontitis have been reported to have a significantly increased risk of developing coronary heart disease. Several studies have demonstrated that the immune response to heat shock protein 60 (HSP60) may be involved in the pathogenesis of both atherosclerosis and chronic periodontitis. To investigate this possible link between these diseases, cellular and humoral immune responses to HSP60 in atherosclerosis patients were compared with those in periodontitis patients and healthy subjects using human and Porphyromonas gingivalis HSP60 (GroEL) as antigens. Antibody levels to both human and P. gingivalis HSP60s were the highest in atherosclerosis patients, followed by periodontitis patients and healthy subjects. Clonal analysis of the T cells clearly demonstrated the presence of not only human HSP60- but also P. gingivalis GroEL-reactive T-cell populations in the peripheral circulation of atherosclerosis patients. Furthermore, these HSP60-reactive T cells seemed to be present in atherosclerotic lesions in some patients. These results suggest that T-cell clones with the same specificity may be involved in the pathogenesis of the different diseases.
Resumo:
Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.
Resumo:
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.
Resumo:
Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.S., Cool, S.M. & Nurcombe, V. (2002) Int. J. Dev. Biol., 46, 661-670]. In this study, the active and passive electrical properties of both undifferentiated and differentiated adult hippocampal NPCs, from 0 to 12 days in vitro as single-cell preparations, were investigated. Sparsely plated, undifferentiated NPCs had a resting membrane potential of approximate to -90 mV and were electrically inexcitable. In > 70%, ATP and benzoylbenzoyl-ATP evoked an inward current and membrane depolarization, whereas acetylcholine, noradrenaline, glutamate and GABA had no detectable effect. In Fura-2-loaded undifferentiated NPCs, ATP and benzoylbenzoyl-ATP evoked a transient increase in the intracellular free Ca2+ concentration, which was dependent on extracellular Ca2+ and was inhibited reversibly by pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), a P2 receptor antagonist. After differentiation, NPC-derived neurons became electrically excitable, expressing voltage-dependent TTX-sensitive Na+ channels, low- and high-voltage-activated Ca2+ channels and delayed-rectifier K+ channels. Differentiated cells also possessed functional glutamate, GABA, glycine and purinergic (P2X) receptors. Appearance of voltage-dependent and ligand-gated ion channels appears to be an important early step in the differentiation of NPCs.
Resumo:
The presence of primary cilia in corneal endothelial cells of a range of species from six non-mammalian vertebrate classes (Agnatha, Elasmobranchii, Amphibia, Teleostei, Reptilia, and Aves) is examined by scanning and transmission electron microscopy. Our aim is to assess whether these non-motile cilia protruding into the anterior chamber of the eye are a consistent phylogenetic feature of the corneal endothelium and if a quantitative comparison of their morphology is able to shed any new light on their function. The length (0.42-3.80 mum) and width (0.12-0.44 mum) of the primary cilia varied but were closely allied with previous studies in mammals. However, interspecific differences such as the presence of a terminal swelling in the Teleostei and Amphibia suggest there are functional differences. Approximately one-third of the endothelial cells possess cilia but the extent of protrusion above the cell surface varies greatly, supporting a dynamic process of retraction and elongation. The absence of primary cilia in primitive vertebrates (Agnatha and Elasmobranchii) that possess other mechanisms to control corneal hydration suggests an osmoregulatory and/or chemosensory function. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Resumo:
Endothelial cell apoptosis contributes to atherosclerosis and may be exacerbated by oxidative stress. Results from clinical trials using antioxidant supplementation are equivocal and could be enhanced by antioxidants with additional non-antioxidant properties such as a-lipoic acid and alpha-tocopherol. The aim of this study was to investigate the effects of these antioxidants on cytoprotective pathways and endothelial apoptosis. Endothelial cells were incubated with alpha-lipoic acid and alpha-tocopherol, alone or in combination, prior to incubation with H2O2 or staurosporine. alpha-lipoic acid pre-treatment alone increased caspase-3 activity in a dose-dependent manner. Both H2O2 and staurosporine increased DNA fragmentation and caspase-3 activity and pre-treatment of cells with a-lipoic acid and/or a-tocopherol failed to prevent stress-induced apoptosis. Neither antioxidant treatments nor apoptotic inducers alone altered expressions of BcI-2, Bax, HSP70 or pERK1/2 or pJNK. alpha-lipoic decreased pERK2 in staurosporine-treated cells in a dose-dependent manner. These findings indicate that pre-incubation with alpha-lipoic acid and alpha-tocopherol, alone or in combination, does not protect against oxidative- or non-oxidative-induced apoptosis in endothelial cells. Moreover, we have demonstrated a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation. These data provide an insight and indicate caution in the use of high doses of alpha-lipoic acid as an antioxidant.
Resumo:
Clark 1 (diphenylarsine chloride) and Clark 2 ( diphenylarsine cyanide) were used as chemical weapon agents (CWA), and the soil contamination by these CWA and their degraded products, diphenyl and phenyl arsenicals, has been one of the most serious environmental issues. In a series of comparisons in toxicity between trivalent and pentavalent arsenicals we investigated differences in the accumulation and toxicity of phenylarsine oxide (PAO(3+)) and phenylarsonic acid (PAA(5+)) in rat heart microvascular endothelial cells. Both the cellular association and toxicity of PAO(3+) were much higher than those of PAA(5+), and LC50 values of PAO(3+) and PAA(5+) were calculated to be 0.295 muM and 1.93 mM, respectively. Buthionine sulfoximine, a glutathione depleter, enhanced the cytotoxicity of both PAO(3+) and PAA(5+). N-Acetyl-L-cysteine (NAC) reduced the cytotoxicity and induction of heme oxygenase-1 (HO-1) mRNA in PAO(3+)-exposed cells, while NAC affected neither the cytotoxicity nor the HO-1 mRNA level in PAA(5+)-exposed cells. The effect of NAC may be due to a strong affinity of PAO(3+) to thiol groups because both NAC and GSH inhibited the cellular accumulation of PAO(3+), but PAA(3+) increased tyrosine phosphorylation levels of cellular proteins. These results indicate that the inhibition of protein phosphatases as well as the high affinity to cellular components may confer PAO(3+) the high toxicity.
Resumo:
Dendritic cell (DC) defects are an important component of immunosuppression in cancer. Here, we assessed whether cancer could affect circulating DC populations and its correlation with tumor progression. The blood DC compartment was evaluated in 136 patients with breast cancer, prostate cancer, and malignant glioma. Phenotypic, quantitative, and functional analyses were performed at various stages of disease. Patients had significantly fewer circulating myeloid (CD11c(+)) and plasmacytoid (CD123(+)) DC, and a concurrent accumulation of CD11c(-)CD123(-) immature cells that expressed high levels of HLA-DR+ immature cells (DR+IC). Although DR+IC exhibited a limited expression of markers ascribed to mature hematopoietic lineages, expression of HLA-DR, CD40, and CD86 suggested a role as antigen-presenting cells. Nevertheless, DR+IC had reduced capacity to capture antigens and elicited poor proliferation and interferon-gamma secretion by T-lymphocytes. Importantly, increased numbers of DR+IC correlated with disease status. Patients with metastatic breast cancer showed a larger number of DR+IC in the circulation than patients with local/nodal disease. Similarly, in patients with fully resected glioma, the proportion of DR+IC in the blood increased when evaluation indicated tumor recurrence. Reduction of blood DC correlating with accumulation of a population of immature cells with poor immunologic function may be associated with increased immunodeficiency observed in cancer.