972 resultados para ECG Online Prediction
Resumo:
In the present paper, the constitutive model is proposed for cemented soils, in which the cementation component and frictional component are treated separately and then added together to get overall response. The modified Cam clay is used to predict the frictional resistance and an elasto-plastic strain softening model is proposed for the cementation component. The rectangular isotropic yield curve proposed by Vatsala (1995) for the bond component has been modified in order to account for the anisotropy generally observed in the case of natural soft cemented soils. In this paper, the model proposed is used to predict the experimental results of extension tests on the soft cemented soils whereas compression test results are presented elsewhere. The model predictions compare quite satisfactorily with the observed response. A few input parameters are required which are well defined and easily determinable and the model uses associated flow rule.
Resumo:
This paper presents an artificial feed forward neural network (FFNN) approach for the assessment of power system voltage stability. A novel approach based on the input-output relation between real and reactive power, as well as voltage vectors for generators and load buses is used to train the neural net (NN). The input properties of the feed forward network are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The neural network is trained for the L-index output as the target vector for each of the system loads. Two separate trained NN, corresponding to normal loading and contingency, are investigated on the 367 node practical power system network. The performance of the trained artificial neural network (ANN) is also investigated on the system under various voltage stability assessment conditions. As compared to the computationally intensive benchmark conventional software, near accurate results in the value of L-index and thus the voltage profile were obtained. Proposed algorithm is fast, robust and accurate and can be used online for predicting the L-indices of all the power system buses. The proposed ANN approach is also shown to be effective and computationally feasible in voltage stability assessment as well as potential enhancements within an overall energy management system in order to determining local and global stability indices
Resumo:
We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
South peninsular India experiences a large portion of the annual rainfall during the northeast monsoon season (October to December). In this study, the facets of diurnal, intra-seasonal and inter-annual variability of the northeast monsoon rainfall (the NEMR) over India have been examined. The analysis of satellite derived hourly rainfall reveals that there are distinct features of diurnal variation over the land and oceans during the season. Over the land, rainfall peaks during the late afternoon/evening, while over the oceans an early morning peak is observed. The harmonic analysis of hourly data reveals that the amplitude and variance are the largest over south peninsular India. The NEMR also exhibits significant intra-seasonal variability on a 20-40 day time scale. Analysis also shows significant northward propagation of the maximum cloud zone from south of equator to the south peninsula during the season. The NEMR exhibits large inter-annual variability with the co-efficient of variation (CV) of 25%. The positive phases of ENSO and the Indian Ocean Dipole (IOD) are conducive for normal to above normal rainfall activity during the northeast monsoon. There are multi-decadal variations in the statistical relationship between ENSO and the NEMR. During the period 2001-2010 the statistical relationship between ENSO and the NEMR has significantly weakened. The analysis of seasonal rainfall hindcasts for the period 1960-2005 produced by the state-of-the-art coupled climate models, ENSEMBLES, reveals that the coupled models have very poor skill in predicting the inter-annual variability of the NEMR. This is mainly due to the inability of the ENSEMBLES models to simulate the positive relationship between ENSO and the NEMR correctly. Copyright (C) 2012 Royal Meteorological Society
Resumo:
Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.
Resumo:
Genetic Algorithm for Rule-set Prediction (GARP) and Support Vector Machine (SVM) with free and open source software (FOSS) - Open Modeller were used to model the probable landslide occurrence points. Environmental layers such as aspect, digital elevation, flow accumulation, flow direction, slope, land cover, compound topographic index and precipitation have been used in modeling. Simulated output of these techniques is validated with the actual landslide occurrence points, which showed 92% (GARP) and 96% (SVM) accuracy considering precipitation in the wettest month and 91% and 94% accuracy considering precipitation in the wettest quarter of the year.
Resumo:
High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper presents novel area optimized architecture for Intra prediction of H.264 decoding at HDTV resolution. The architecture has been validated on a Xilinx Virtex-5 FPGA based platform and achieved a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
Research in the field of recognizing unlimited vocabulary, online handwritten Indic words is still in its infancy. Most of the focus so far has been in the area of isolated character recognition. In the context of lexicon-free recognition of words, one of the primary issues to be addressed is that of segmentation. As a preliminary attempt, this paper proposes a novel script-independent, lexicon-free method for segmenting online handwritten words to their constituent symbols. Feedback strategies, inspired from neuroscience studies, are proposed for improving the segmentation. The segmentation strategy has been tested on an exhaustive set of 10000 Tamil words collected from a large number of writers. The results show that better segmentation improves the overall recognition performance of the handwriting system.
Resumo:
A modification of the jogged-screw model has been adopted recently by the authors to explain observations of 1/2[110]-type jogged-screw dislocations in equiaxed Ti-48Al under creep conditions. The aim of this study has been to verify and validate the parameters and functional dependencies that have been assumed in this previous work. The original solution has been reformulated to take into account the finite length of the moving jog. This is a better approximation of the tall jog. The substructural model parameters have been further investigated in light of the Finite Length Moving Line (FLML) source approximation. The original model assumes that the critical jog height (beyond which the jog is not dragged) is inversely proportional to the applied stress. By accounting for the fact that there are three competing mechanisms (jog dragging, dipole dragging, dipole bypass) possible, we can arrive at a modified critical jog height. The critical jog height was found to be more strongly stress dependent than assumed previously. The original model assumes the jog spacing to be invariant over the stress range. However, dynamic simulation using a line tension model has shown that the jog spacing is inversely proportional to the applied stress. This has also been confirmed by TEM measurements of jog spacings over a range of stresses. Taylor's expression assumed previously to provide the dependence of dislocation density on the applied stress, has now been confirmed by actual dislocation density measurements. Combining all of these parameters and dependencies, derived both from experiment and theory, leads to an excellent prediction of creep rates and stress exponents. The further application of this model to other materials, and the important role of atomistic and dislocation dynamics simulations in its continued development is also discussed.