994 resultados para Dynamic Mobility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study some dynamic generalized information measures between a true distribution and an observed (weighted) distribution, useful in life length studies. Further, some bounds and inequalities related to these measures are also studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the residual Kullback–Leibler discrimination information measure is extended to conditionally specified models. The extension is used to characterize some bivariate distributions. These distributions are also characterized in terms of proportional hazard rate models and weighted distributions. Moreover, we also obtain some bounds for this dynamic discrimination function by using the likelihood ratio order and some preceding results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, cumulative residual entropy (CRE) has been found to be a new measure of information that parallels Shannon’s entropy (see Rao et al. [Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory. 50(6) (2004), pp. 1220–1228] and Asadi and Zohrevand [On the dynamic cumulative residual entropy, J. Stat. Plann. Inference 137 (2007), pp. 1931–1941]). Motivated by this finding, in this paper, we introduce a generalized measure of it, namely cumulative residual Renyi’s entropy, and study its properties.We also examine it in relation to some applied problems such as weighted and equilibrium models. Finally, we extend this measure into the bivariate set-up and prove certain characterizing relationships to identify different bivariate lifetime models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study some relevant information divergence measures viz. Renyi divergence and Kerridge’s inaccuracy measures. These measures are extended to conditionally specifiedmodels and they are used to characterize some bivariate distributions using the concepts of weighted and proportional hazard rate models. Moreover, some bounds are obtained for these measures using the likelihood ratio order

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal changes in odor concentration are vitally important to many animals orienting and navigating in their environment. How are such temporal changes detected? Within the scope of the present work an accurate stimulation and analysis system was developed to examine the dynamics of physiological properties of Drosophila melanogaster olfactory receptor organs. Subsequently a new method for delivering odor stimuli was tested and used to present the first dynamic characterization of olfactory receptors at the level of single neurons. Initially, recordings of the whole antenna were conducted while stimulating with different odors. The odor delivery system allowed the dynamic characterization of the whole fly antenna, including its sensilla and receptor neurons. Based on the obtained electroantennogram data a new odor delivery method called digital sequence method was developed. In addition the degree of accuracy was enhanced, initially using electroantennograms, and later recordings of odorant receptor cells at the single sensilla level. This work shows for the first time that different odors evoked different responses within one neuron depending on the chemical structure of the odor. The present work offers new insights into the dynamic properties of olfactory transduction in Drosophila melanogaster and describes time dependent parameters underlying these properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.