996 resultados para Dry Surfaces.
Resumo:
In this paper, we present new methods for constructing and analysing formulations of locally reacting surfaces that can be used in finite difference time domain (FDTD) simulations of acoustic spaces. Novel FDTD formulations of frequency-independent and simple frequency-dependent impedance boundaries are proposed for 2D and 3D acoustic systems, including a full treatment of corners and boundary edges. The proposed boundary formulations are designed for virtual acoustics applications using the standard leapfrog scheme based on a rectilinear grid, and apply to FDTD as well as Kirchhoff variable digital waveguide mesh (K-DWM) methods. In addition, new analytic evaluation methods that accurately predict the reflectance of numerical boundary formulations are proposed. numerical experiments and numerical boundary analysis (NBA) are analysed in time and frequency domains in terms of the pressure wave reflectance for different angles of incidence and various impedances. The results show that the proposed boundary formulations structurally adhere well to the theoretical reflectance. In particular, both reflectance magnitude and phase are closely approximated even at high angles of incidence and low impedances. Furthermore, excellent agreement was found between the numerical boundary analysis and the experimental results, validating both as tools for researching FDTD boundary formulations.
Resumo:
A systematic study of the effect of the Reynolds number on the fluid dynamics and turbulence statistics of pulsed jets impinging on a flat surface is presented. It has been suggested that the influence of the Reynolds number may be somewhat different for a jet subjected to pulsation when compared to an equivalent steady jet. A comparative study of both steady and pulsating jets is presented for a Reynolds number range from Re = 4;730 to Re = 10;000. All the other factors that affect the flowfield are kept constant, which are H/d = 3, St = 0.25, and d = 30.5 mm. It was found that for the range of the Reynolds numbers tested, pulsation results in a shortening of the jet core, the centerline axial velocity component declines more rapidly, and higher values of the radial velocity component for r/d > 0.75are observed. As the Reynolds number increases, the jet spreads more rapidly, the turbulent kinetic energy and nondimensional turbulent fluctuations decrease, and the flowfield near the impinging surface changes drastically, which is evident with the development of a turbulent momentum exchange interaction away from the wall for r/d > 1.5.
Resumo:
Monensin, a carboxylic acid ionophore, is commonly fed to poultry to control coccidiosis. A method for rapid analysis of unextracted poultry plasma samples has been developed based on a novel immunoassay format: one-step all-in-one dry reagent time resolved fluorimetry. All assay specific components were pre-dried onto microtitration plate wells. Only addition of the serum sample diluted in assay buffer was required to perform analysis. Results were available one hour after sample addition. The limit of detection (mean + 3s) of the assay calculated from the analysis of 23 known negative samples was 14.2 ng ml(-1). Intra- and inter-assay RSD were determined as 15.2 and 7.4%, respectively, using a plasma sample fortified with 50 ng ml(-1) monensin. Eight broiler chickens were fed monensin at a dose rate of 120 mg kg(-1) feed for one week, blood sampled then slaughtered without drug withdrawal. Plasma monensin concentrations, as determined by the fluoroimmunoassay ranged from 101-297 ng ml(-1). This compared with monensin liver concentrations, determined by LC-MS, which ranged fi om 13-41 ng g(-1). The fluoroimmunoassay described is extremely user friendly, gives particularly rapid results and is suitable for the detection and quantification of plasma monensin residues. Data from medicated poultry suggest that analysis of plasma may be useful in predicting the extent of monensin liver residues.
Resumo:
We report on the characterization of the specular reflection of 50 fs laser pulses in the intensity range 10(17)-10(21)Wcm(-2) obliquely incident with p-polarization onto solid density plasmas. These measurements show that the absorbed energy fraction remains approximately constant and that second harmonic generation (SHG) achieves efficiencies of 22 +/- 8% for intensities approaching 10(21)Wcm(-2). A simple model based on the relativistic oscillating mirror concept reproduces the observed intensity scaling, indicating that this is the dominant process involved for these conditions. This method may prove to be superior to SHG by sum frequency mixing in crystals as it is free from dispersion and retains high spatial coherence at high intensity.
Resumo:
An impedance surface is presented that reduces the dispersion experienced upon propagation of broadband pulses within rectangular waveguides. The surface impedance is selected so that, within a frequency range, the transverse resonance condition is satisfied for longitudinal wavenumber that varies linearly with frequency. A synthesis procedure for practical surface topologies consisting of periodic dipole arrays is described. An example involving a finite structure is employed to illustrate the reduced dispersion. Numerical simulation results obtained from in-house mode-matching method as well as HFSS are presented. A prototype is fabricated and tested experimentally validating the theoretical predictions.
Resumo:
A study of the external, loaded and unloaded quality factors for frequency selective surfaces (FSSs) is presented. The study is focused on THz frequencies between 5 and 30 THz, where ohmic losses arising from the conductors become important. The influence of material properties, such as metal thickness, conductivity dispersion and surface roughness, is investigated. An equivalent circuit that models the FSS in the presence of ohmic losses is introduced and validated by means of full-wave results. Using both full-wave methods as well as a circuit model, the reactive energy stored in the vicinity of the FSS at resonance upon plane-wave incidence is presented. By studying a doubly periodic array of aluminium strips, it is revealed that the reactive power stored at resonance increases rapidly with increasing periodicity. Moreover, it is demonstrated that arrays with larger periodicity-and therefore less metallisation per unit area-exhibit stronger thermal absorption. Despite this absorption, arrays with higher periodicities produce higher unloaded quality factors. Finally, experimental results of a fabricated prototype operating at 14 THz are presented.
Resumo:
The use of high-impedance surfaces (HISs) to increase the frequency-scanning sensitivity of hollow leaky-wave antennas (LWAs) is presented. The LWA consists of a hollow rectangular waveguide with one of its narrow walls replaced by a partially reflective surface, and it is loaded with a metallodielectric HIS to increase its beam-scanning response. Theoretical results based on a simple transverse equivalent network illustrate the physical mechanism responsible for the improvement, and they are verified by experiments on a prototype working in the 11-16 GHz band.
Resumo:
This communication investigates the potential for fabrication of micromachined silicon sub-millimeter wave periodic arrays of freestanding slot frequency selective surfaces (FSS) using wet etch KOH technology. The vehicle for this is an FSS for generating circularly polarized signals from an incident linearly polarized signal at normal incidence to the structure. Principal issues and fabrication processes involved from the initial design of the core FSS structures to be made and tested through to their final testing are addressed. Measured and simulated results for crossed and ring slot element shapes in single and double layer polarization convertor structures are presented for sub-mm wave operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one layer perforated screen design and that the rate of change is lower than the double layer structures. An insertion loss of 1.1 dB can be achieved for the split circular ring double layer periodic array. These results are shown to be compatible with the more specialized fabrication equipment dry reactive ion etching approach previously used for the construction of this type of structure. © 2011 IEEE.