995 resultados para Dopaminergic mechanisms.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique properties of nanomaterials, in particular gold nanoparticles (GNPs) have applications for a wide range of biomedical applications. GNPs have been proposed as novel radiosensitizing agents due to their strong photoelectric absorption coefficient. Experimental evidence supporting the application of GNPs as radiosensitizing agents has been provided from extensive in vitro investigation and a relatively limited number of in vivo studies. Whilst these studies provide experimental evidence for the use of GNPs in combination with ionising radiation, there is an apparent disparity between the observed experimental findings and the level of radiosensitization predicted by mass energy absorption and GNP concentration. This review summarises experimental findings and attempts to highlight potential underlying biological mechanisms of response in GNP radiosensitization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a three-dimensional continuum damage mechanics-based material model which was implemented in an implicit finite element code to simulate the progressive intralaminar degradation of fibre reinforced laminates. The damage model is based on ply failure mechanisms and uses seven damage variables assigned to tensile, compressive and shear damage at a ply level. Non-linear behaviour and irreversibility were taken into account and modelled. Some issues on the numerical implementation of the damage model are discussed and solutions proposed. Applications of the methodology are presented in Part II

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional continuum damage mechanics-based material model was implemented in an implicit Finite Element code to simulate the progressive intralaminar degradation of fibre reinforced laminates based on ply failure mechanisms. This paper presents some structural applications of the progressive failure model implemented. The focus is on the non-linear response of the shear failure mode and its interaction with other failure modes. Structural applications of the damage model show that the proposed model is able to reproduce failure loads and patterns observed experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the fractographic analysis of five CFRP post-buckled skin/stringer panels that were tested to failure in compression. The detailed damage mechanisms for skin/stiffener detachment in an undamaged panel were characterised and related to the stress conditions during post-buckling; in particular the sites of peak twist (at buckling nodes) and peak bending moments (at buckling anti-nodes). The initial event was intralaminar splitting of the +45 degrees plies adjacent to the skin/stiffener interface, induced by high twist at a nodeline. This was followed by mode II delamination, parallel to +/- 45 degrees plies and then lengthwise (0 degrees) shear along the stiffener centreline. The presence of defects or damage was found to influence this failure process, leading to a reduction in strength. This research provides an insight into the processes that control post-buckled performance of stiffened panels and suggests that 2D models and element tests do not capture the true physics of skin/stiffener detachment: a full 3D approach is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multitude of biomolecular and regulatory factors involved in staphylococcal adhesion and biofilm formation owe much to their ability to colonize surfaces, allowing the biofilm form to become the preferential bacterial phenotype. Judging by total number, biomass and variety of environments colonized, bacteria can be categorized as the most successful lifeform on earth. This is due to the ability of bacteria and other microorganisms to respond phenotypically via biomolecular processes to the stresses of their surrounding environment. This review focuses on the specific pathways involved in the adhesion of the Gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus with reference to the role of specific cell surface adhesins, the ica operon, accumulation-associated proteins and quorum-sensing systems and their significance in medical device-related infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to gain further insight into the role that central dopaminergic pathways play in GH neuroregulation in man. Our experimental hypothesis was based on the possibility that most of the controversies on DA role could be due to the fact that the hypothalamic somatotroph rhythm (HSR) was not taken into account when interpreting the GH responses after pharmacological manipulations on dopaminergic pathways. In 10 normal subjects we monitored the effect of central dopaminergic blockade, achieved with metoclopramide (MCP; 10 mg, i.v. Bolus), on the pattern of spontaneous GH secretion and the GH responses to a GHRH challenge (GRF , 1 µg/kg, i.v. bolus) administered together with MCP or 60 min after this drug was given. The study of HSR was made according to our previous postulate. Our results indicate that MCP administration, either prior to or together with the GHRH bolus, significantly increased GHRH-induced GH release during a refractory HSR phase; but not when the GHRH challenge took place during a spotaneous secretory phase. The strong relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks was lost when MCP was given. These data indicate that MCP was able to disrupt the intrinsic HSR by inhibiting the hypothalamic release of somatostain (SS). While a main conclusion would be that central DA is a secretagogue for SS secretion, our results also suggest that this role could be dependent on its effects on the adrenergic inputs to SS neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated auditory hallucinations (AH) in a sample with chronic posttraumatic stress disorder (PTSD) and examined dissociation and thought suppression as potential associated mechanisms. In all, 40 individuals with PTSD were assessed on the hallucinations subscale of the Positive and Negative Syndrome Scale and on measures of dissociation and thought suppression. Half of the sample reported AH (n = 20, 50%). Those reporting AH had higher general and pathological dissociation scores but did not differ on thought suppression or PTSD symptom severity. Results suggest that (a) AH in chronic PTSD is not a rare phenomenon, (b) dissociation is significantly related to AH, and (c) dissociation may be a potential mediating mechanism for AH in PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: In previous studies we have shown that extravasated, modified LDL is associated with pericyte loss, an early feature of diabetic retinopathy (DR). Here we sought to determine detailed mechanisms of this LDLinduced pericyte loss.

Methods: Human retinal capillary pericytes (HRCP) were exposed to ‘highly-oxidised glycated’ LDL (HOG-LDL) (a model of extravasated and modified LDL) and to 4-hydroxynonenal or 7-ketocholesterol (components of oxidised LDL), or to native LDL for 1 to 24 h with or without 1 h of pretreatment with inhibitors of the following: (1) the scavenger receptor (polyinosinic acid); (2) oxidative stress (N-acetyl cysteine); (3) endoplasmic reticulum (ER) stress (4-phenyl butyric acid); and (4) mitochondrial dysfunction (cyclosporin A). Oxidative stress, ER stress, mitochondrial dysfunction, apoptosis and autophagy were assessed using techniques including western blotting, immunofluorescence, RT-PCR, flow cytometry and TUNEL assay. To assess the relevance of the results in vivo, immunohistochemistry was used to detect the ER stress chaperon, 78 kDa glucose-regulated protein, and the ER sensor, activating transcription factor 6, in retinas from a mouse model of DR that mimics exposure of the retina to elevated glucose and elevated LDL levels, and in retinas from human participants with and without diabetes and DR.

Results: Compared with native LDL, HOG-LDL activated oxidative and ER stress in HRCP, resulting in mitochondrial dysfunction, apoptosis and autophagy. In a mouse model of diabetes and hyperlipidaemia (vs mouse models of either condition alone), retinal ER stress was enhanced. ER stress was also enhanced in diabetic human retina and correlated with the severity of DR.

Conclusions/interpretation: Cell culture, animal, and human data suggest that oxidative stress and ER stress are induced by modified LDL, and are implicated in pericyte loss in DR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products N epsilon-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.