879 resultados para Ditzian-Totik modulus of smoothness
Resumo:
A low strain shear modulus plays a fundamental role in the estimation of site response parameters In this study an attempt has been made to develop the relationships between standard penetration test (SPT) N values with the low strain shear modulus (G(max)) For this purpose, field experiments SPT and multichannel analysis of surface wave data from 38 locations in Bangalore, India, have been used, which were also used for seismic microzonation project The in situ density of soil layer was evaluated using undisturbed soil samples from the boreholes Shear wave velocity (V-s) profiles with depth were obtained for the same locations or close to the boreholes The values for low strain shear modulus have been calculated using measured V-s and soil density About 215 pairs of SPT N and G(max) values are used for regression analysis The differences between fitted regression relations using measured and corrected values were analyzed It is found that an uncorrected value of N and modulus gives the best fit with a high regression coefficient when compared to corrected N and corrected modulus values This study shows better correlation between measured values of N and G(max) when compared to overburden stress corrected values of N and G(max)
Resumo:
The mechanical properties of Al-Zn-Mg alloy reinforced with SiCP composites prepared by solidification route were studied by altering the matrix strength with different heat treatments. With respect to the control alloy, the composites have shown similar ageing behaviour in terms of microhardness data at 135 degrees C. It was shown that although composites exhibited enhanced modulus values, the strengthening was found to be dependent on the damage that is occurring during straining. Thus the initial matrix strength plays an important role in determining the strengthening. Consequently, compression data had shown a different trend compared to tension. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of relatively low modulus adhesive at the ends of overlap in a bi-adhesive bondline of a bonded joint can reduce the stress concentration significantly and, therefore, potentially lead to higher strength of the joint. This study presents the two-dimensional and three-dimensional nonlinear (geometric and material) finite element analyses of adhesively bonded single lap joints having modulus-graded bondline under monotonic loading conditions. The adhesives were modelled as an elasto-plastic multi-linear material, while the substrates were regarded as both linear elastic and bi-linear elasto-plastic material. The computational simulations have been performed to investigate the bondline behaviour by studying the stress and strain distributions both at the mid-plane as well as at the interface of the bondline. It has been observed that the static strength is higher for joints with bi-adhesive bondlines compared to those with single adhesives in bondline. Higher joint strength has also been observed for optimum bi-adhesive bondline ratio through parametric studies. Effects of load level, and bondline thickness on stress distribution in the bi-adhesive bondline have also been studied. 3D analysis results reveal the existence of complex multi-axial stress/strain state at the ends of the overlap in the bondline which cannot be observed in 2D plane strain analysis. About 1/3rd of the width of the joint from the free edge in the width direction has 3D stress state, especially in the compliant adhesive of the bondline. Magnitudes of longitudinal and lateral stress/strain components are comparable to peel stress/strain components. It has also been analytically shown that the in-plane global stiffness of the joint remains unaffected by modulus gradation of the bondline adhesive. (C) Koninklijke Brill NV, Leiden, 2010.
Resumo:
Seismic structural design is essentially the estimation of structural response to a forced motion, which may be deterministic or stochastic, imposed on the ground. The assumption that the same ground motion acts at every point of the base of the structure (or at every support) is not always justifiable; particularly in case of very large structures when considerable spatial variability in ground motion can exist over significant distances example long span bridges. This variability is partly due to the delay in arrival of the excitation at different supports (which is called the wave passage effect) and due to heterogeneity in the ground medium which results in incoherency and local effects. The current study examines the influence of the wave passage effect (in terms of delay in arrival of horizontal ground excitation at different supports and neglecting transmission through the structure) on the response of a few open-plane frame building structures with soil-structure interaction. The ground acceleration has been modeled by a suitably filtered white noise. As a special case, the ground excitation at different supports has also been treated as statistically independent to model the extreme case of incoherence due to local effects and due to modifications to the ground motion resulting from wave reflections and refractions in heterogeneous soil media. The results indicate that, even for relatively short spanned building frames, wave passage effect can be significant. In the absence of soil-structure interaction, it can significantly increase the root mean square (rms) value of the shear in extreme end columns for the stiffer frames but has negligible effect on the flexible frames when total displacements are considered. It is seen that pseudo-static displacements increasingly contribute to the rms value of column shear as the time delay increases both for the stiffer and for the more flexible frames. When soil-structure interaction is considered, wave passage effect (in terms of total displacements) is significant only for low soil shear modulus, G. values (where soil-structure interaction significantly lowers the fundamental frequency) and for stiff frames. The contribution of pseudo-static displacement to these rms values is found to decrease with increase in G. In general, wave passage effect for most interactive frames is insignificant compared to the attenuating effect a decrease in G, has on the response of the interactive structure to uniform support excitation. When the excitations at different supports are statistically independent, it is seen that for both the stiff and flexible frames, the rms value of the column shear in extreme end columns is several times larger (more for the stiffer frames) than the value corresponding to uniform base excitation with the pseudo-static displacements contributing over 99% of the rms value of column shear. Soil-structure interaction has an attenuating effect on the rms value of the column shear, the effect decreasing with increase in G,. Here too, the pseudo-static displacements contribute very largely to the column shear. The influence of the wave passage effect on the response of three 2-bay frames with and without soil-structure interaction to a recorded horizontal accelerogram is also examined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms.Methods: A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model base numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. Results: The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. Conclusions: The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3456441]
Resumo:
The deterioration of the mechanical properties of bone with age is related to several factors including the structure, organization and chemistry of the constituent phases; however, the relative contribution of each of these factors is not well understood. In this study, we have investigated the effect of chemistry (calcium deficiency) on the mechanical properties of single crystals of hydroxyapatite. Single crystals of stoichiometric crystals grown by the flux method and calcium-deficient platelet crystals grown using wet chemical methods were used as model systems. Using nanoindentation, we show that calcium deficiency leads to an 80% reduction in the hardness and elastic modulus and at least a 75% reduction in toughness in plate-shaped hydroxyapatite crystals. Measurement of local mechanical properties using nanoindentation and nanoscale chemistry through elemental mapping in a transmission electron microscope points to a direct correlation between the observed spatial variation in composition and the large scatter in the measured hardness and modulus values. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.
Resumo:
A symmetric solution X satisfying the matrix equation XA = AtX is called a symmetrizer of the matrix A. A general algorithm to compute a matrix symmetrizer is obtained. A new multiple-modulus residue arithmetic called floating-point modular arithmetic is described and implemented on the algorithm to compute an error-free matrix symmetrizer.
Resumo:
We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.
Resumo:
The complex permittivity characteristics of epoxy nanocomposite systems were examined and an attempt has been made to understand the underlying physics governing some of the unique macroscopic dielectric behaviors. The experimental investigations were performed using two different nanocomposite systems with low filler concentrations over the frequency range of 10(-2)-400 Hz, but for some cases, the data has been reported upto 10(6) Hz for a better understanding of the behaviors. Results demonstrate that nanocomposites do possess unique permittivity behaviors as compared to those already known for unfilled polymer and microcomposite systems. The nanocomposite real permittivity and tan delta values are found to be lower than that of unfilled epoxy. In addition, results show that interfacial polarization and charge carrier mobilities are suppressed in epoxy nanocomposite systems. The complex permittivity spectra coupled with the ac conductivity characteristics with respect to frequency was found to be sufficient to identify several of the nanocomposite characteristics like the reduction in permittivity values, reduction in the interfacial polarization mechanisms and the electrical conduction behaviors. Analysis of the results are also performed using electric modulus formalisms and it has been seen that the nanocomposite dielectric behaviors at low frequencies can also be explained clearly using this formalism.
Resumo:
Alkali metal perchlorates (KClO4, RbClO4, and CsClO4) undergo a structural phase transition from the orthorhombic to the cubic phase at elevated temperatures. A detailed dielectric study of these crystals across the phase transition is carried out at different frequencies. The crystals are found to exhibit pronounced dielectric dispersion in the kHz frequency range. The results support the view that these transitions are of order–disorder type. The dielectric behaviour at temperatures above Tc is discussed in terms of modulus spectroscopy. An estimate of conductivity relaxation times above the phase transition temperatures made from modulus spectroscopy data gives values of 3.1, 12.2 and 17.7 μs for KClO4, RbClO4, and CsClO4, respectively.
Resumo:
Attempts were made to produce directionally solidified, specifically grain aligned Al-6 wt pct Ni eutectic alloy using a laboratory scale ESR unit. For this purpose sand cast alloy electrodes were electroslag remelted under different mold conditions. The grain structure of the ingots obtained from these meltings showed that insulated silica molds gave the best vertical alignment of grains along the length of the ingot. The NiAl3 fibers within the grains tended to fan out and there was only a preferred alignment of fibers along the growth direction under the conditions of our experiments. The ESR parameters most suitable for vertical alignment of eutectic grains have been identified. In some electroslag remelting trials ingots were grown on a seed ingot. This resulted in a fewer vertical grains compared to the case when no seed ingot was used. The sand cast specimen of the eutectic exhibited a maximum tensile strength of around 88.2 MN/m2 (9.0 kg/mm2) whereas conventional ESR using water cooled mold gave strength value of 98.0 MN/m2 (10 kg/mm2). The directionally solidified ESR material showed longitudinal tensile strength as high as 213.7 MN/m2 (21.8 kg/mm2) which could be further increased to 220.6 MN/m2 (22.5 kg/mm2) by using the seed ingot. The average growth rate was varied between 5 to 25 mm/min during electroslag remelting in this study. The flow stresses, tangent modulus and ultimate tensile strength of directionally solidified eutectic increased with increasing growth rates.
Resumo:
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 x 10(-3) S cm(-1) has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The influence of particulate additions of alumina on the flexural properties of glass-fabric/epoxy composites was studied. The additions improved translaminar flexural strength, while decreasing interlaminar strength. The translaminar bending modulus showed an increasing trend whereas its interlaminar value showed a decrease, up to additions of 3 vol%. The mechanisms of deformation and the fracture features have been discussed with the aid of scanning electron microscopy.