879 resultados para Disturbance amplitude
Resumo:
OBJECTIVE Women diagnosed as having breast cancer may experience difficulties with posttreatment effects such as menopausal symptoms. The aims of this pilot study were to (1) evaluate the impact of a multimodal lifestyle program on reducing menopausal symptoms in women with breast cancer and (2) examine the impact of the program on health-related quality of life (HRQoL) and adherence to lifestyle recommendations. METHODS Overall, 55 women aged 45 to 60 years with one moderate to severe menopausal symptom and a history of breast cancer were randomized into an intervention group (n = 26) or a control group (n = 29). Women in the intervention group received a lifestyle intervention (The Pink Women’s Wellness Program) that included clinical consultations and a tailored health education program. Measurements of menopausal symptoms (Greene Climacteric Scale), HRQoL (SF-12 and Functional Assessment of Cancer Therapy—Breast), and modifiable lifestyle factors (food intake, physical activity, smoking and alcohol use, and sleep disturbance) were taken at baseline and 12 weeks. RESULTS Women in the intervention group reported clinically significant reductions in many menopausal symptoms, specifically somatic symptoms (d = 0.52), vasomotor symptoms (d = 0.55), sexual dysfunction (d = .65), and overall menopausal symptoms (d = 0.54), at 12 weeks compared with the control group (d = 0.03, d = 0.24, d = 0.18, and d = 0.05, respectively). Women in the intervention group reported improvements in Functional Assessment of Cancer Therapy—Breast subscale scores, physical well-being and functional well-being, and Functional Assessment of Cancer Therapy—General total scores (intervention group: d = 0.54, d = 0.50, and d = 0.48, respectively; control group: d = 0.22, d = 0.11, and d = 0.05, respectively). CONCLUSIONS The Pink Women’s Wellness Program is effective in decreasing menopausal symptoms, thus improving HRQoL. This being a pilot study, further research is recommended to investigate the benefits of combining nonpharmacological interventions for women with breast cancer to reduce their treatment-related menopausal symptoms.
Resumo:
Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.
Resumo:
Purpose To investigate the frequency of convergence and accommodation anomalies in an optometric clinical setting in Mashhad, Iran, and to determine tests with highest accuracy in diagnosing these anomalies. Methods From 261 patients who came to the optometric clinics of Mashhad University of Medical Sciences during a month, 83 of them were included in the study based on the inclusion criteria. Near point of convergence (NPC), near and distance heterophoria, monocular and binocular accommodative facility (MAF and BAF, respectively), lag of accommodation, positive and negative fusional vergences (PFV and NFV, respectively), AC/A ratio, relative accommodation, and amplitude of accommodation (AA) were measured to diagnose the convergence and accommodation anomalies. The results were also compared between symptomatic and asymptomatic patients. The accuracy of these tests was explored using sensitivity (S), specificity (Sp), and positive and negative likelihood ratios (LR+, LR−). Results Mean age of the patients was 21.3 ± 3.5 years and 14.5% of them had specific binocular and accommodative symptoms. Convergence and accommodative anomalies were found in 19.3% of the patients; accommodative excess (4.8%) and convergence insufficiency (3.6%) were the most common accommodative and convergence disorders, respectively. Symptomatic patients showed lower values for BAF (p = .003), MAF (p = .001), as well as AA (p = .001) compared with asymptomatic patients. Moreover, BAF (S = 75%, Sp = 62%) and MAF (S = 62%, Sp = 89%) were the most accurate tests for detecting accommodative and convergence disorders in terms of both sensitivity and specificity. Conclusions Convergence and accommodative anomalies are the most common binocular disorders in optometric patients. Including tests of monocular and binocular accommodative facility in routine eye examinations as accurate tests to diagnose these anomalies requires further investigation.
Resumo:
Auditory fear conditioning is dependent on auditory signaling from the medial geniculate (MGm) and the auditory cortex (TE3) to principal neurons of the lateral amygdala (LA). Local circuit GABAergic interneurons are known to inhibit LA principal neurons via fast and slow IPSP's. Stimulation of MGm and TE3 produces excitatory post-synaptic potentials in both LA principal and interneurons, followed by inhibitory post-synaptic potentials. Manipulations of D1 receptors in the lateral and basal amygdala modulate the retrieval of learned association between an auditory CS and foot shock. Here we examined the effects of D1 agonists on GABAergic IPSP's evoked by stimulation of MGm and TE3 afferents in vitro. Whole cell patch recordings were made from principal neurons of the LA, at room temperature, in coronal brain slices using standard methods. Stimulating electrodes were placed on the fiber tracts medial to the LA and at the external capsule/layer VI border dorsal to the LA to activate (0.1-0.2mA) MGm and TE3 afferents respectively. Neurons were held at -55.0 mV by positive current injection to measure the amplitude of the fast IPSP. Changes in input resistance and membrane potential were measured in the absence of current injection. Stimulation of MGm or TE3 afferents produced EPSP's in the majority of principal neurons and in some an EPSP/IPSP sequence. Stimulation of MGm afferents produced IPSP's with amplitudes of -2.30 ± 0.53 mV and stimulation of TE3 afferents produced IPSP's with amplitudes of -1.98 ± 1.26 mV. Bath application of 20μM SKF38393 increased IPSP amplitudes to -5.94 ± 1.62 mV (MGm, n=3) and-5.46 ± 0.31 mV (TE3, n=3). Maximal effect occurred <10mins. A small increase in resting membrane potential and decrease in input resistance were observed. These data suggest that DA modulates both the auditory thalamic and auditory cortical inputs to the LA fear conditioning circuit via local GABAergic circuits. Supported by NIMH Grants 00956, 46516, and 58911.
Resumo:
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
Background: The majority of studies investigating the neural mechanisms underlying treatment in people with aphasia have examined task-based brain activity. However, the use of resting-state fMRI may provide another method of examining the brain mechanisms responsible for treatment-induced recovery, and allows for investigation into connectivity within complex functional networks Methods: Eight people with aphasia underwent 12 treatment sessions that aimed to improve object naming. Half the sessions employed a phonologically-based task, and half the sessions employed a semantic-based task, with resting-state fMRI conducted pre- and post-treatment. Brain regions in which the amplitude of low frequency fluctuations (ALFF) correlated with treatment outcomes were used as seeds for functional connectivity (FC) analysis. FC maps were compared from pre- to post-treatment, as well as with a group of 12 healthy older controls Results: Pre-treatment ALFF in the right middle temporal gyrus (MTG) correlated with greater outcomes for the phonological treatment, with a shift to the left MTG and supramarginal gyrus, as well as the right inferior frontal gyrus, post-treatment. When compared to controls, participants with aphasia showed both normalization and up-regulation of connectivity within language networks post-treatment, predominantly in the left hemisphere Conclusions: The results provide preliminary evidence that treatments for naming impairments affect the FC of language networks, and may aid in understanding the neural mechanisms underlying the rehabilitation of language post-stroke.
Resumo:
The Great Sandy Region (incorporating Fraser Island and the Cooloola sand-mass), south-east Queensland, contains a significant area of Ramsar-listed coastal wetlands, including the globally important patterned fen complexes. These mires form an elaborate network of pools surrounded by vegetated peat ridges and are the only known subtropical, Southern Hemisphere examples, with wetlands of this type typically located in high northern latitudes. Sedimentological, palynological and charcoal analysis from the Wathumba and Moon Point complexes on Fraser Island indicate two periods of swamp formation (that may contain patterned fens), one commencing at 12 000 years ago (Moon Point) and the other ~4300 years ago (Wathumba). Wetland formation and development is thought to be related to a combination of biological and hydrological processes with the dominant peat-forming rush, Empodisma minus, being an important component of both patterned and non-patterned mires within the region. In contrast to Northern Hemisphere paludifying systems, the patterning appears to initiate at the start of wetland development or as part of an infilling process. The wetlands dominated by E. minus are highly resilient to disturbance, particularly burning and sea level alterations, and appear to form important refuge areas for amphibians, fish and birds (both non-migratory and migratory) over thousands of years.
Resumo:
During post-disaster recovery, an infrastructure system may be subject to a number of disturbances originating from several other interdependent infrastructures. These disturbances might result in a series of system failures, thereby having immediate impact on societal living conditions. The inability to detect signs of disturbance from one infrastructure during recovery might cause significant disruptive effects on other infrastructure via the interconnection that exist among them. In such circumstances, it clearly appears that critical infrastructures' interdependencies affect the recovery of each individual infrastructure, as well as those of other interdependent infrastructure systems. This is why infrastructure resilience needs to be improved in function of those interdependencies, particularly during the recovery period to avoid the occurrence of a ‘disaster of disaster’ scenario. Viewed from this perspective, resilience is achieved through an inter-organisational collaboration between the different organisations involved in the reconstruction of interdependent infrastructure systems. This paper suggests that to some extent, the existing degree of interconnectedness between these infrastructure systems can also be found in their resilience ability during post-disaster recovery. For instance, without a resilient energy system, a large-scale power outage could affect simultaneously all the interdependent infrastructures after a disaster. Thus, breaking down the silos of resilience would be the first step in minimizing the risks of disaster failures from one infrastructure to cascade or escalate to other interconnected systems.
Resumo:
Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.
Resumo:
INTRODUCTION There is a large range in the reported prevalence of end plate lesions (EPLs), sometimes referred to as Schmorl's nodes in the general population (3.8-76%). One possible reason for this large range is the differences in definitions used by authors. Previous research has suggested that EPLs may potentially be a primary disturbance of growth plates that leads to the onset of scoliosis. The aim of this study was to develop a technique to measure the size, prevalence and location of EPLs on Computed Tomography (CT) images of scoliosis patients in a consistent manner. METHODS A detection algorithm was developed and applied to measure EPLs for five adolescent females with idiopathic scoliosis (average age 15.1 years, average major Cobb 60°). In this algorithm, the EPL definition was based on the lesion depth, the distance from the edge of the vertebral body and the gradient of the lesion edge. Existing low-dose, CT scans of the patients' spines were segmented semi-automatically to extract 3D vertebral endplate morphology. Manual sectioning of any attachments between posterior elements of adjacent vertebrae and, if necessary, endplates was carried out before the automatic algorithm was used to determine the presence and position of EPLs. RESULTS EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 73% of the EPLs were seen in the lumbar spines (11/15). A sensitivity study demonstrated that the algorithm was most sensitive to changes in the minimum gradient required at the lesion edge. CONCLUSION An imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs on CT images has been developed. Although the technique was tested on scoliosis patients, it can be used to analyse other populations without observer errors in EPL definitions.
Resumo:
This paper aims to trace surface evolution in the wheel-rail interface using data obtained from a twin-disc testing machine and the surface replication technique. Changes in the surface profile of the rail testing disc are explicitly analysed according to the wear mechanism, which helps elaborate a better understanding of the attrition of asperities during the wearing-in process of surface modification. The surface profile amplitude was seen to decrease during the initial running-in phase of the experiment cycle, and after reaching a saturation value, the profile amplitude then increased. Ultimately the results show that grinding will roughen the rail surface and the wheel-rail contact conditions will then remove this surface damage to some saturation value of the profile height. The variation in the rail surface profile beyond this point is then only dependant on the contact conditions which exist between the wheel and rail during normal operation.
Spatiotemporal pattern of bacillary dysentery in China from 1990 to 2009: What is the driver behind?
Resumo:
BACKGROUND Little is known about the spatiotemporal pattern of bacillary dysentery (BD) in China. This study assessed the geographic distribution and seasonality of BD in China over the past two decades. METHODS Data on monthly BD cases in 31 provinces of China from January 1990 to December 2009 obtained from Chinese Center for Disease Control and Prevention, and data on demographic and geographic factors, as well as climatic factors, were compiled. The spatial distributions of BD in the four periods across different provinces were mapped, and heat maps were created to present the seasonality of BD by geography. A cosinor function combined with Poisson regression was used to quantify the seasonal parameters of BD, and a regression analysis was conducted to identify the potential drivers of morbidity and seasonality of BD. RESULTS Although most regions of China have experienced considerable declines in BD morbidity over the past two decades, Beijing and Ningxia still had high BD morbidity in 2009. BD morbidity decreased more slowly in North-west China than other regions. BD in China mainly peaked from July to September, with heterogeneity in peak time between regions. Relative humidity was associated with BD morbidity and peak time, and latitude was the major predictor of BD amplitude. CONCLUSIONS The transmission of BD was heterogeneous in China. Improved sanitation and hygiene in North-west China, and better access to clean water and food in the big floating population in some metropolises could be the focus of future preventive interventions against BD. BD control efforts should put more emphasis on those dry areas in summer.
Resumo:
In this paper we report the findings from an evaluation of the introduction of sensory modulation (SM) in an acute mental health inpatient unit. It was expected that SM could be used to help settle patients experiencing high levels of disturbance and that as a result, there would be less need for use of more restrictive seclusion practices. The evaluation took place in a hospital in south-east Queensland, Australia. SM was introduced in one acute unit while the other served as a control. The evaluation comprised two studies. In the first study we aimed to determine whether SM reduced the level of disturbance among patients given the opportunity to use it. In the second study we aimed to find out whether the introduction of SM reduced the frequency and duration of seclusion. In study 1, we found that most patients reported marked reduction in disturbance after using SM and there was a very large effect size for the group as a whole. In study 2, we found that frequency of seclusion dropped dramatically in the unit that introduced SM but rose slightly in the unit that did not have access to SM. The change in seclusion rate was highly significant (χ2 = 49.1, df = 1, p < 0.001). Results are discussed, having reference to the limitations inherent in a naturalistic study.
Resumo:
In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.